Waste Audit and Analysis of a Three Bin Waste Reduction System

May 2013

Student Investigators: Ryan Massey & Juliana G. Lucchesi
Advisor: Sarah Rykal

University of Wisconsin-Stout
Waste Audit and Analysis of New Waste Reduction System

Sarah Rykal¹, Juliana Lucchesi², Ryan Massey²

¹Environmental Sustainability Coordinator, University of Wisconsin-Stout, Menomonie, WI, USA
²College of Science, Technology, Engineering, and Mathematics, University of Wisconsin-Stout, Menomonie, WI, USA

1. Abstract

The rethinking of waste and recycling systems within the university section has created a movement toward expanding and reshaping of centralized systems. A waste audit over the span of two semesters and the addition of an educational campaign was used to evaluate the success of the new three bin centralized waste system on the campus of University of Wisconsin-Stout. The initial waste audit conducted before the application of the full system indicated reduced trash rates and high recycling and composting rates for most residence hall containers on-campus due to the system being installed early. A final waste audit in April 2013 showed a decrease in trash waste rates due to the system and the supplemental educational campaigns.

2. Background

The current economic and environmental climate issues have led academic institutions to reevaluate and redesign their solid waste management systems. The University of Wisconsin-Stout in response to the increased interest in effective waste management has formed the Waste Reduction Work Group (WRWG). The WRWG consists of a diverse group of UW-Stout employees and students who have a stake in the reduction of solid waste on campus. The current waste rate taken to landfills on-campus for the last two years as stabilized at 66%. To decrease the overall amount of trash produced, a new recycling and waste program has been developed (Appendix A). The new system also includes recommendations for signage to educate the campus community about the new recycling system.

Another problem observed on campus is the lack of education and knowledge about which items go into which container (i.e. Composting, Trash, and Recyclable) and how increasing recycling and compost rates can benefit UW-Stout and students economically and environmentally. To complement the waste reduction plan, educational strategies will also be implemented to educate the campus community about the new system and the importance of reducing solid waste throughout campus.

The No Sort, or single sort, recycling method has shown successful economically and esthetically in various states (University of Wisconsin-Milwaukee). The single sort system has shown a significant increase in cost efficiency, increased participation and tonnage collected from single sort recycling. The change to single sort recycling will also cut the additional cost of hiring a third party to take paper waste off campus. Advance Disposal will now collect all commingled recycling and mixed paper waste, which reduces additional labor costs to collect paper waste separately.

A successful example of a working waste program is Dartmouth College. Dartmouth redesigned their solid waste management system in 2010. Gary Hill, director of facilities and grounds at Dartmouth College, identified and discussed the changes in labeling and maintenance protocol for trash, recyclable, and compost pick-up (March 16, 2012). The Dartmouth system has doubled the recycling rate from two years ago. The Dartmouth system does not rely heavily upon educational strategies because the new system has proven to be very successful (Appendix B).
3. Objectives

- Conduct a waste audit to determine the effect of the new three bin waste system on the rate of waste taken to landfills
- Analyze landfill tipping rates and container amounts to determine economic value of the waste system
- Analyze social success of system through an educational campaign and satisfaction survey

4. Materials and methods

4.1. Container Labeling and Monitoring

A master list of containers, which was compiled from documents provided by Advance Disposal, was used to identify all of the waste containers to be monitored. Each bin was assigned a code based on the building it is associated with, and its location relative to that building. The bin code consists of an abbreviation of the building; followed by a letter corresponding to which side of the building the bin is located. North, East, South, and West are assigned A, B, C, and D respectively. For example, there are locations with multiple containers that are all the same size, so the number only corresponds to the number of bins in the location to assure that all bins are checked.

Data collection began in October 2012 and ran for four weeks. The waste contained in each bin was measured on a relative scale of 0-5, 0 being an empty container, and 5 representing a container that was full. For some containers, a 6 was recorded to represent a container that was overflowing or had waste on the ground near a container.

The level of each container was checked on the evening before, or the morning of its scheduled tipping time. This way, the amount of waste recorded in each container was representative of its level when it was emptied by Advanced Disposal.

4.2. Analysis of Tipping Schedule and Filling Rates

Post data collection the average fill rate of each container is collected. The average fill rates are compared to view the change in waste behavior. The amount of change between the two collection periods will be applied to the cost of tipping to determine economic impact of the waste reduction system.

4.3. Educational Strategies Analysis

The educational strategies will be determined after the first collection period. The quality of the programming and attendance will be recorded. Complementary signage will also be recorded as an educational element to the waste system.

5. Results and Discussion

4.1 Container Average Fill Rates

The average fill rates for all container locations indicated the current tipping schedule could be set to a less frequent schedule. A majority of the residence hall containers could also be reduced in total number due to the lack of utilization. Sites that had a lower spring fill rate than the fall fill rate illustrate
the point that the three bin waste system assisted in reducing solid waste rates (Table 1).

The difference between fall and spring was also recorded to identify containers that did not benefit from the three bin system implementation. Three containers all located at the Red Cedar Residence Hall indicated more waste in the spring than the fall, site #’s 42, 43, and 44 (Table 2). Since the three bin system was applied to the residence halls in the fall semester there was little to no change between the rates in the fall and in the spring. Sites # 6, 22, 35, and 41 are set at zero (Table 2) because they were only recorded in the spring semester and do not have fall data to compare. A map of the containers monitored in the study is provided at the end of the report (Appendix C). The numbering on the maps is not the same as the site #’s in the study. Containers in blue are in reference to recycling dumpsters. Containers in green are in reference to centralized composting containers. Black containers circled in
red were not recorded in this study due to the infrequent tipping and utilization.

Overall, there was a noticeable change in the waste rates of the academic buildings from fall to spring. The residence halls did not show a significant difference between the first and second analysis periods in rates, which is likely due to the three bin system being implemented before the analysis period in the fall.

4.2 Economic Data and Impact

The economic data and impact was calculated by reducing the tipping rate of the site #’s with an average fill rate of 3.00 (half full container), during the spring waste audit, and applying the reduced schedule rate (Appendix D) for each site. The total estimated campus wide savings created by reducing the tipping schedule would be $631.48 per semester. The removal of one container at each of the residence halls Antrim-Froggatt-McCalmont (AFM), Hansen-Keith-Milnes-Chinnock (HKMC), and Curran-Kranzusch-Tustison-Oetting (CKTO) would also increase the economic benefit of the three bin system. The cost of reducing the container numbers has not been quoted at this time.

A result of the three bin system that was not taken into account is the increase in centralized recycling containers. Two additional containers were purchased for the spring semester and placed at the General Services building. The cost of the additional recycling container is $71.92, thus the net savings of the three bin system is $559.56.

The cost of centralized composting to date is a service fee of $134.04 for all composting containers, with an additional fee of $25.52 for every ton of composting. The net savings after the application of the composting transportation fee is $425.52.

4.3 Signage to Accompany System

The educational campaigns applied with the three bin systems consisted of signage and educational events. The order of the containers on-campus and within the residence halls are recycling, composting, and trash for landfill (Appendix A). The WRWG made the decision to save the existing containers and apply stickers to them to differentiate the different bins (Picture 1). The signage above the bins used in the residence halls will be applied to the rest of campus, except the Memorial Student Center and Price Commons. The signage above the bins will be in a similar color coding to the container stickers. The signage will also feature pictures of items that are sorted into each bin (Picture 2).

Picture 1. The stickers on the bins indicate which bin is recyclable, composting, and trash for landfill. The stickers also indicate what items go into which bin.
The stickers were designed by a student to complement the Memorial Student Center three bin systems. The stickers shown are for the composting bin.

The recycling center header board, seen in a different four bin system, will be purchased during summer 2013 term to compliment the Memorial Student Center three bin system.

The signage to accompany the three bin system helps indicate which items sort into which bin.

The signage has not been applied to the whole campus. Stickers to help people learn what item goes into which bin have been applied in the Memorial Student Center as an education tool (Picture 3). Walls where stickers cannot be used will have headers on the containers (Picture 4). The Memorial Student Center and the Price Commons were the only two sites on-campus that purchased new bins (Picture 4). The bins still follow the three bin system orientation and colors. Proper signage was indicated by users as being important and essential when first learning the system. Off-campus users did have difficulty utilizing the system until they were either helped by a staff member or found signage to read.
4.4 Education Campaigns and Events

RecycleMania is an international recycling competition held in the spring with the objective to reduce solid waste on university campuses. University of Wisconsin-Stout participated in 2012 and in 2013 after the three bin system was applied to campus. Although the measuring of waste is different, it does offer another set of data to evaluate the success of the three bin system. In 2012, UW-Stout was ranked 202nd with a waste rate of 66%. In 2013, UW-Stout jumped to 115th with a waste rate of 58% (Rykal).

Other local events that supported the three bin system was a composting demo that was organized by the Sustainable Agriculture Education Association (SAEA) Stout Student Chapter for Earth Week. The event consisted of Advanced Disposal bringing a container of the UW-Stout finished compost for students to use as potting soil. The Biology – 111 Science, Society, and the Environment students put on composting demonstration clinics to help individuals navigate the three bin system (Picture 5). The use of interactive educational sessions gave students, staff, and faculty a higher depth of understanding and confidence to use the three bin system.

The last educational piece developed by Sustainable Stout was a video to engage students in the “Green-We-Go” video series (Curious Fern Productions). The video was a comprehensive, engaging contest between two students to see who could utilize the three bin system the best.

Overall, the success of the system does depend heavily upon proper signage and engaging training methods for individuals to understand not only how to navigate the system but to understand the positive effects of composting and recycling.
References
Curious Fern Productions, Sustainable Stout. “Green We Go: Extreme Compost Challenge (Season 2, Episode 2)”. Accessed from http://www.youtube.com/watch?v=1nP3CryVg
Appendix A

Proposal for a Recycling and Waste Program at UW-Stout

Proposed by the Waste Reduction Work Group, a sub-committee of the Environmental Sustainability Steering Committee

Overview

In fall 2011, Chancellor Charles W. Sorensen charged UW-Stout’s Environmental Sustainability Steering Committee (ESSC) with developing “a proposal to enhance UW-Stout’s recycling and waste program.” The ESSC formed a subcommittee called the Waste Reduction Work Group (WRWG) comprised of students, faculty, and staff representing different areas of campus that were determined to have a large stake in recycling and waste decision-making. The members of the WRWG include:

- Lori Anda, University Recreation/Athletics
- Tom Biasi, Physical Plant
- Bob Dodge, Surplus Operations
- Scott Griesbach, University Housing
- Krista James, Biology Department/ESSC
- Shirley Klebesadel, Physical Plant
- Karen Lund, Memorial Student Center
- Ben Markl, University Housing
- Ryan Massey, Student/ESSC
- Sarah Rykal, Environmental Sustainability/ESSC
- Mike Smith, Physical Plant
- Juliana Lucchesi, Student/Stout Student Association/ESSC
- Ann Thies, University Dining Services
- Brent Tilton, Purchasing & Procurement Management

During the 2011-2012 academic year, the WRWG held regular meetings to discuss the best recycling and waste program for all stakeholders and for the campus as a whole. The result of these meetings is contained in this proposal, as the WRWG recommends a new recycling, composting, waste collection system for UW-Stout.

History

Recycling Audit

In Spring 2011, students in BIO-111 (Science, Society, and the Environment) and SUST-425 (Sustainable Design & Development Capstone) performed a waste and recycling audit of all academic buildings on the UW-Stout campus. They surveyed these buildings to determine the numbers and types of trash receptacles and recycling receptacles (co-mingled, paper, plastic only, aluminum only, etc.) in each building. Students found 25 different recycling receptacles and 23 different trash
receptacles (see Figure 1 below). After collating the data, the lack of consistency in recycling and trash container style and availability from building to building was evident. The students believed that the variation of these receptacles across campus created confusion for students, faculty, staff, and campus visitors who are trying to dispose of waste properly.

Additionally, the students surveyed students, faculty, and staff in each of the academic buildings and found that people are more likely to put their recyclable items or trash in whatever container is present, even if there is only one container. For example, if a trash container is present in a classroom and a student wants to dispose of an empty soda bottle, s/he is more likely to put the bottle in the trash container, rather than trying to locate a recycling container somewhere else in the building. In sum, the students found that disposal of waste – whether it be recyclable or not – is a matter of convenience for people in the academic buildings.

Based on these findings, the students made the following recommendations regarding a waste and recycling program for UW-Stout:

- Create a uniform system comprised of a set of containers (trash, recycling, compost, etc.) in consistent locations near primary walkways and entries/exits in buildings across campus.
Remove trash containers from classrooms and meeting rooms in favor of having a set of containers in corridors or entry/exit points.

Formation of the Waste Reduction Work Group

In November 2011, the WRWG first convened to discuss the students’ findings, as well as the charge of developing a proposal to enhance UW-Stout’s recycling and waste program from the Chancellor. They determined that developing a uniform system of recycling and waste collection for the UW-Stout campus was important for reducing waste as a campus. The WRWG identified a number of factors necessary to create a uniform recycling system, including order, wording, signage, and location of each collection container.

The Dartmouth College Model

In March 2012, the WRWG had a teleconference with Gary Hill, Facilities Director at Dartmouth College regarding a recycling plan that he had implemented on Dartmouth’s campus in July 2010. After speaking with Gary Hill, the WRWG decided that many aspects of the Dartmouth College model could be implemented at UW-Stout, resulting in higher recycling rates and potential financial savings for the UW-Stout campus. See Appendix B for more information regarding this model.

Considerations

The WRWG made the following considerations when developing this proposal:

- Financial viability – creating a system for recycling with a financial cost to the university that is as much or less than the current system
- Increased recycling rates – creating a system that promotes recycling on campus and leads to increased diversion of waste from the landfill
- Minimizing labor for custodial staff – creating a system that reduces the amount of custodial time needed for recycling collection
- Consistency in recycling practices – creating a system that is a campus-wide standard for recycling, to eliminate confusion for students, faculty, and staff
- Minimizing space – creating a system that minimizes space for recycling containers, particularly in dorm rooms where space is limited

Recycling and Waste in Indoor Locations at UW-Stout

Categories of Collection Containers

The WRWG recommends the following containers for campus use:

- **No Sort Recycling:** commingled recycling, which includes plastic (all rigid containers #1 to #7), glass, aluminum, tin, and mixed paper (including office paper, newspaper, magazines, cardstock)
- **Organics for Compost:** compostable materials, which includes:
 - food waste: including food scraps (fruits, vegetables, dairy products, breads, pasta, grains, eggshells, nut shells, meat, seafood, bones, shells, coffee grounds, coffee filters)
- food-soiled paper: dinner napkins, paper towels, paper bags with food scraps
- compostable food containers
- compostable cups
- compostable dinnerware
- approved compostable bags

- Trash for Landfill: trash, which includes foil, plastic bags, plastic wrap, candy wrappers, gum, lamination, restroom tissue, personal hygiene items

Order and Wording of Collection Containers

All three containers should be grouped together in a cluster. When facing the containers, they should be ordered left to right as follows: No Sort Recycling, Organics for Compost, Trash for Landfill.

To demonstrate UW-Stout’s commitment to sustainability and to save on costs, current indoor containers will continue to be used for collection of recyclable materials, compostable materials, and trash.

When purchasing new recycling and waste containers for campus, the WRWG recommends that the campus purchase containers colored in compliance with universally accepted colors for recycling, compost, and trash. Therefore, containers should be purchased with the following color standards in mind:

- No Sort Recycling: Blue
- Organics for Compost: Green
- Trash for Landfill: Black

![Figure 2: Proposed Order and Wording of Indoor Collection Containers When Facing Containers](image)

The WRWG recommends gathering all indoor containers during Summer 2012 and placing similar containers in groups based on size and color (as outlined above), to create a more uniform look.

Sticker Signage on Indoor Collection Containers

Stickers appropriate for the size of the container should be adhered to each container, with the proper wording (as described above) and a brief listing of what items can be placed in the containers. Containers should be placed so that the stickers are facing the corridors. Multiple stickers should be adhered to each container.
Organics for Compost
Previously, compostable materials have not been collected among the general public at UW-Stout. These containers can be lined with compostable bags as needed. If a bag is used, it must be a compostable bag (i.e., compostable plastic or paper bag). We recommend that all new Organics for Compost containers be emptied as appropriate by the custodial staff and brought to a central location, a new compost dumpster behind the General Services building.

Cardboard
Cardboard is currently placed near recycling containers and is collected by the custodial staff. The WRWG recommends that cardboard continue to be collected this way in interior locations of campus. The WRWG recommends that the campus consider selling cardboard to a recycler in the future, which would likely necessitate the purchased of compactor for the campus. The WRWG chose not to make a decision on this matter until a new trash and recycling contract is agreed upon.

Location of Collection Containers within Buildings
Container sets should be located near all exits of each building, provided they do no block egress. They should also be located in interior corridors with frequent traffic. Container sets should be within visual distance when exiting any room in a building, a distance of approximately every 30 feet. No containers should be located within classrooms or meeting rooms. Accommodations will be made for special events on campus. In addition, we recommend that in the University Library, all containers be removed from the stacks in favor of a location with frequent traffic.

Signage in Meeting Rooms and Classrooms
Since containers will not be present in classrooms or meeting rooms, we recommend that signage be posted in these rooms, indicating that there are collection containers outside of the room. Signage should be posted at the front and exit of each classroom and meeting room. The signage should read as follows:

At UW-Stout, sustainability is important to us.
Recycling, composting, and trash containers are located outside this room.

Restroom Locations
Because paper towels are a good source of carbon for composting, paper towels can be collected separately in restrooms. Therefore, two containers should be located in each restroom. These shall be labeled with stickers as well:

- Paper Towels for Compost, which includes paper towels only
- Trash for Landfill, which includes anything other than paper towels, such as restroom tissue or personal hygiene products
Lab Locations Where Food is Not Allowed
At UW-Stout, lab technicians already have a process in place for collecting and recycling hazardous waste within their own labs. The WRWG recommends that Paper Towels for Compost and Trash for Landfill containers be present in all labs and classroom labs where food is not allowed.
Food Labs

Food labs, located in Heritage Hall, allow food for use by students, faculty, and staff. The WRWG recommends that the following three containers be present in all food labs: No Sort Recycling, Organics for Compost, and Trash for Landfill.

![Figure 5: Proposed Order and Wording of Food Lab Collection Containers When Facing Containers](image)

Recycling and Waste in Outdoor Locations at UW-Stout

The WRWG recommends that, as to not attract animals, organic materials for compost *not* be collected at outdoor locations. Therefore, the following categories for outdoor collection containers are recommended:

- No Sort Recycling, which includes plastic (all rigid containers #1 to #7), glass, aluminum, tin, and mixed paper (including office paper, newspaper, magazines, cardstock)
- Trash for Landfill, which includes foil, plastic bags, plastic wrap, candy wrappers, gum, lamination, restroom tissue, personal hygiene items, food waste, food-soiled paper

![Figure 6: Proposed Order and Wording of Outdoor Collection Containers When Facing Containers](image)

Signage on Outdoor Collection Containers

UW-Stout currently purchases outdoor trash containers from Rubbermaid. The WRWG proposes that we purchase the same containers for No Sort Recycling and add signage to these containers to differentiate them from the current trash containers.

Collection System – Dumpsters

Currently, we have one dumpster located at each building on campus to collect trash for the associated building. Commingled recycling, paper, and cardboard are picked up daily by custodial staff and brought to a centralized location.
Compost dumpsters are currently located at loading docks for Price Commons, North Point, and Memorial Student Center. With the implementation of this proposed system, we recommend that an additional centralized compost dumpster dedicated to all other campus buildings be placed behind General Services. Compostable materials can be picked up by custodial staff and brought to this centralized location, so as not to increase the number of dumpsters at each building.

We also recommend that No Sort Recycling and cardboard continue to be picked up and brought to centralized locations.

Educating the Campus

The WRWG recommends the following educational efforts to market the proposed recycling system for the UW-Stout campus:

- Detailed signage including wording and explanations on every container on campus. The WRWG recommends including a listing of examples for each container, such as:
 - No Sort Recycling: commingled recycling, which includes plastic (all rigid containers #1 to #7), glass, aluminum, tin, and mixed paper (including office paper, newspaper, magazines, cardstock)
 - Organics for Compost: compostable materials, which includes:
 - food waste: including food scraps (fruits, vegetables, dairy products, breads, pasta, grains, eggshells, nut shells, meat, seafood, bones, shells, coffee grounds, coffee filters)
 - food-soiled paper: dinner napkins, paper towels, paper bags with food scraps
 - compostable food containers
 - compostable cups
 - compostable dinnerware
 - approved compostable bags
 - Trash for Landfill: trash, which includes foil, plastic bags, plastic wrap, candy wrappers, gum, lamination, restroom tissue, personal hygiene items
- Signage in classrooms and meeting rooms as recommended in the “Signage in Rooms” section of this proposal (page 6)
- Mandatory training of all campus staff, including custodial staff, in the new recycling and waste system
- Creating an instructional sheet to be passed out to faculty and staff, in the new student packets, etc.
- Creating short instructional videos for recycling on campus to be displayed on the UW-Stout Sustainability website, the UW-Stout YouTube channel, Facebook, and on televisions in the Memorial Student Center
- Giving presentations at freshman orientation to help new students understand the recycling system on campus

Budget

The WRWG submits the following estimate of costs to implement this campus-wide recycling and waste program. We recommend that the implementation of the 110 outdoor No Sort Recycling containers be phased in over the course of three years, starting in 2012-2013 and ending in 2014-2015. The Grounds Department already has 30 outdoor containers available for No Sort Recycling, leaving 80 containers to be purchased.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Individual Cost</th>
<th>Total Cost</th>
<th>Cost Per Year (over 3 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sticker Signage for Containers in all buildings on campus</td>
<td>3,500 10,000</td>
<td>$1.16 $0.34</td>
<td>$812.00</td>
<td>N/A</td>
</tr>
<tr>
<td>8 ½ x 11” Laminated Signage for Meeting Rooms (20), Classrooms (88), Labs (245), Assembly Rooms (4)</td>
<td>900</td>
<td>$1.03</td>
<td>$927.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Posters above Containers in Academic and Administrative Buildings *Printed at UW-Stout Printing Services</td>
<td>2700</td>
<td>$0.36</td>
<td>$972.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Containers for Residence Halls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue 28 quart</td>
<td>1,700</td>
<td>$3.62</td>
<td>$17,112.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Green 28 quart</td>
<td>300</td>
<td>$3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Slim Jim Lid</td>
<td>125</td>
<td>$23.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue 41 quart</td>
<td>100</td>
<td>$7.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue 50 gallon</td>
<td>40</td>
<td>$82.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost for Indoor Locations</td>
<td></td>
<td></td>
<td>$27,133.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Outdoor Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containers for Outdoor Locations (36 in Year 1, 37 in Years 2 and 3)</td>
<td>80 (30 already available)</td>
<td>$695</td>
<td>$55,600.00</td>
<td>Year 1: $4,170.00 Year 2: $25,715.00 Year 3: $25,715.00</td>
</tr>
<tr>
<td>Signage for Outdoor No Sort Recycling Containers</td>
<td>440 (110 x 4)</td>
<td>$9.99 (20-3/4” x 34-1/2")</td>
<td>$4,395.60</td>
<td>$1,465.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Shipping for Signage</td>
<td>N/A</td>
<td>$300.00</td>
<td>$300.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Cost for Outdoor Locations</td>
<td></td>
<td>$60,295.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST FOR YEAR ONE (2012-2013)</td>
<td>$32,868.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST FOR YEAR TWO (2013-2014)</td>
<td>$27,280.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST FOR YEAR THREE (2014-2015)</td>
<td>$27,280.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timeline

The WRWG recommends that UW-Stout begin the implementation of this recycling and waste system at the beginning of the 2012-2013 academic year. The recommended timeline is as follows:

- **Summer 2012:**
 - University Housing works to label and place all indoor containers in residence halls.

- **October 2012:**
 - Sarah Rykal and Tom Dye put together a series of announcements to the campus – via the ASLS Newsletter, a series of emails from the Vice Chancellor’s Office, etc. – to make the campus aware of the new program.

- **January 2013:**
 - Tom Biasi and custodial staff implement the program during Winter Break by:
 - Creating a plan for working through each building to collect and label the waste and recycling containers in accordance with the proposal;
 - Placing the containers in key areas of each building, as identified by the custodial staff, and in accordance with the proposal; and
 - Posting the posters above the container locations at eye-level.

- **Spring 2013:** Grounds crew works to label and place 1/3 of outdoor No Sort Recycling containers (30 containers already on hand plus 6 new containers from Rubbermaid).

- **Spring 2014:** Grounds purchases 37 new Rubbermaid containers and works to label and place them in outdoor areas with no current No Sort Recycling containers.

- **Spring 2015:** Grounds purchases 37 new Rubbermaid containers and works to label and place them in outdoor areas with no current No Sort Recycling containers.

Recycling Target

According to Recyclemania 2012, UW-Stout’s recycling rate is 21%. The first place finisher, American University, placed with a recycling rate of 85.16%. The average recycling rate of all 265 competing universities was 30.9%. The WRWG suggests setting an initial target recycling rate of 60% with the expectation that we will reevaluate once this target is achieved.
Appendix B

The Dartmouth College Model

In July 2010, Dartmouth College moved to a recycling system that utilized the following key points:

- Created a Zero-Sort® (single-stream) recycling system in which they collected paper, plastic, glass, and cans in commingled containers campus-wide.
- Replaced all waste bins in offices with a 54 oz. bucket for trash and/or compostable materials and a cardboard box for recyclables. The bucket contained no liners and could be rinsed in a sink if necessary.
- Asked faculty/staff to empty their own trash, compost, recycling into one of multiple centralized locations within their building. They had the support of the President, Vice President, and Provost, all of whom pledged that they would empty their own containers.
- Removed almost all trash and recycling containers from classrooms and meeting rooms and spaced sets of containers 30 feet apart, so when a person exited a classroom or meeting room, containers would be in view.
- Used current bins, rather than buying new ones, and created a large sticker for trash containers and Zero-Sort® recycling containers.

Since the beginning of the program’s implementation less than two years ago, Dartmouth’s recycling rates have nearly tripled. In addition, the Facilities Department has experienced a labor savings of 20% per building – roughly $1 million per year – by converting to this system.
Appendix C

Mapping of container locations. Site #'s in report do not match container #'s on the maps.
Appendix D

Waste system data sheets for containers

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Size</th>
<th>Days Tipped</th>
<th>Full Week Tipping Fee</th>
<th>Partial Week Tipping Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Student Health Center</td>
<td>2-yard dumpster</td>
<td>F</td>
<td>$11.19</td>
<td>$0.00</td>
</tr>
<tr>
<td>2</td>
<td>Wigen Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>3</td>
<td>Wigen Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>4</td>
<td>Red Cedar Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td>$86.58</td>
</tr>
<tr>
<td>5</td>
<td>Red Cedar Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td>$86.58</td>
</tr>
<tr>
<td>6</td>
<td>Hovlid Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>7</td>
<td>North Point Dining</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>8</td>
<td>Fleming Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td>$86.58</td>
</tr>
<tr>
<td>9</td>
<td>Fleming Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td>$86.58</td>
</tr>
<tr>
<td>10</td>
<td>JTC</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$57.72</td>
<td>$28.86</td>
</tr>
<tr>
<td>11</td>
<td>JTC</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$57.72</td>
<td>$28.86</td>
</tr>
<tr>
<td>12</td>
<td>Administration</td>
<td>2-yard dumpster</td>
<td>R</td>
<td>$11.19</td>
<td>$0.00</td>
</tr>
<tr>
<td>13</td>
<td>Harvey Hall</td>
<td>8-yard dumpster</td>
<td>F</td>
<td>$23.11</td>
<td>$0.00</td>
</tr>
<tr>
<td>14</td>
<td>Bowman Hall</td>
<td>6-yard dumpster</td>
<td>R</td>
<td>$19.22</td>
<td>$0.00</td>
</tr>
<tr>
<td>15</td>
<td>University Services</td>
<td>4-yard dumpster</td>
<td>F</td>
<td>$15.08</td>
<td>$0.00</td>
</tr>
<tr>
<td>16</td>
<td>University Services</td>
<td>8-yard dumpster</td>
<td>T,F</td>
<td>$39.52</td>
<td>$0.25</td>
</tr>
<tr>
<td>17</td>
<td>University Services</td>
<td>8-yard dumpster</td>
<td>F</td>
<td>$23.11</td>
<td>$0.00</td>
</tr>
<tr>
<td>18</td>
<td>Millennium</td>
<td>6-yard dumpster</td>
<td>T,F</td>
<td>$31.92</td>
<td>$15.96</td>
</tr>
<tr>
<td>19</td>
<td>General Services</td>
<td>4-yard dumpster</td>
<td>F</td>
<td>$15.08</td>
<td>$0.00</td>
</tr>
<tr>
<td>20</td>
<td>North Hall</td>
<td>8-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$114.96</td>
<td>$57.48</td>
</tr>
<tr>
<td>21</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>22</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>23</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>24</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>25</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>26</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>27</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>28</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>29</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>30</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>31</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>32</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>33</td>
<td>AFM</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>34</td>
<td>MSC</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$115.44</td>
<td>$57.72</td>
</tr>
<tr>
<td>35</td>
<td>Jarvis Hall Science</td>
<td>8-yard dumpster</td>
<td>T,F</td>
<td>$39.52</td>
<td>$19.76</td>
</tr>
<tr>
<td>36</td>
<td>Jarvis Hall Tech</td>
<td>8-yard dumpster</td>
<td>T,F</td>
<td>$39.52</td>
<td>$19.76</td>
</tr>
<tr>
<td>37</td>
<td>(Curran-Kranzusch-Tustison-Oetting)</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td>$86.58</td>
</tr>
<tr>
<td>38</td>
<td>CKTO</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td>$86.58</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Dumpster Size</td>
<td>Days</td>
<td>Rate M</td>
<td>Rate T</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>39</td>
<td>CKTO</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Price Commons</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Price Commons</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>South Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>South Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$173.16</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>South Hall</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>(Hansen-Keith-Milnes-Chinnock)</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>HKMC</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td>$230.88</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>HKMC</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>HKMC</td>
<td>2-yard dumpster</td>
<td>M,T,W,R,F,S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Applied Arts</td>
<td>8-yard dumpster</td>
<td>M,T,R,F</td>
<td>$76.64</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Sports & Fitness</td>
<td>8-yard dumpster</td>
<td>R</td>
<td>$23.11</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Sports & Fitness</td>
<td>6-yard dumpster</td>
<td>R</td>
<td>$19.22</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Williams Stadium</td>
<td>2-yard dumpster</td>
<td></td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Williams Stadium</td>
<td>2-yard dumpster</td>
<td></td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Williams Stadium</td>
<td>2-yard dumpster</td>
<td></td>
<td>$0.00</td>
<td></td>
</tr>
</tbody>
</table>