RE: ENGINEERING HALL EXPERIMENTAL MECHANICS LAB RENOVATION UNIVERSITY OF WISCONSIN - MADISON UWSA Project No. A-22-006

BID OPENING: For MEP BIDDERS: 2:00 P.M., THURSDAY, MARCH 02, 2023

For GENERAL PRIME CONTRACTORS: 2:00 PM, THURSDAY, MARCH 16, 2023

FROM: Hammel, Green and Abrahamson, Inc. Architects and Engineers 333 East Erie Street Milwaukee, WI 53202

TO: Prospective Bidders

This addendum forms a part of the Contract Documents and modifies the original Contract Documents dated **February 1, 2023** as noted below. Acknowledge receipt of this Addendum by inserting the number and issue date of this addendum in the blank space provided on the Bid Form. Failure to do so may subject the Bidder to disqualification.

This Addendum consists of 50 pages. This text document of two (2) pages and attached Lab Equipment Cutsheets of 48 pages for the total of 50 pages.

PREBID WALKTHROUGH (occurred on Friday, February 17, 1:00 p.m.) QUESTIONS AND ANSWERS:

- Question was asked about clarifying the Material Identification Codes (Material IDs) on the Finish Plan (A261) and how to find the information that details the specific materials? *Response: The Material IDs listed on the Finish Plans, Elevations and Details are all referenced on Sheet 010 – 'General Notes and Symbols.' This Sheet contains the 'Material Identification Code List' which outlines the ID Code, a description of the material, and the specification section number to reference full details and requirements of the product.*
- Question was asked if the architect could provide the Equipment Cut Sheets for the lab equipment listed on Sheet A241 – 'Equipment Plan'? Response: the equipment cutsheets are attached for reference/informational use as a pdf document in this Addenda.

CHANGES TO BIDDING REQUIREMENTS:

3. NONE in this Addendum

CHANGES TO SPECIFICATIONS (DIVISIONS 2 THRU 28):

- 1. 09 54 54 Linear Wood Ceiling <WD CLG-2>
 - a. Page 095454-1, Section 2.1, Part A, add accepted manufacturer "ASI Linear."

CHANGES/ADDITIONS TO DRAWINGS:

1. NONE in this Addendum.

END OF ADDENDUM

Hammel, Green and Abrahamson, Inc. Architects and Engineers 333 East Erie Street Milwaukee, WI 53202

For the Board of Regents of the University of Wisconsin On Behalf of the University of Wisconsin – Madison 1860 Van Hise Hall, 1220 Linden Drive Madison, Wisconsin 53703 Every aspect of Series 651 Environmental Chambers was designed using decades of MTS experience developing test systems for numerous industries. These environmental chambers may include:

- » Circulating fan helps ensures small specimen temperature gradients
- » Removable "U-plug" sections allowing chambers to be moved into place after the specimen is mounted and instrumented
- » Doors that open to 180° or can be lifted away for convenient specimen access
- » Multi-panel, tempered optical quality glass windows are sealed to reduce fogging and frosting. If required for

non-contacting strain measurement solutions or video monitoring, the chambers can be provided with optional defrost elements

- » Internal light to illuminate the test area is supported by 651.05 & .06.
 651.10 chambers have an external light mounted to the chamber window / door
- » Mobile carts to prevent interference between chambers and the load frame

Generic Series 651 Schematic

Choose from an Extensive Portfolio

Series 651 chambers support a wide range of tests, applications and test system configurations.

Model 651.05F-01 works in a variety of general materials testing applications -151°C (-238°F) up to 350°C (662°F) with floor-standing models of the MTS Acumen test system.

Model 651.05F-02 is ideal for general materials testing applications -151°C (-238°F) up to 350°C (662°F) with tabletop models of the MTS Acumen test system.

Model 651.06E-03 handles general materials testing -129°C (-200°F) up to 315°C (600°F) with floor-standing MTS Landmark test systems.

Model 651.10E-04 offers support for general materials testing -129°C (-200°F) up to 540°C (1000°F) with floor-standing MTS Landmark test systems.

Model 651.06E-04 is designed to accommodate large specimens or specimens that require large grips within the chamber. Works -129°C (-200°F) up to 315°C (600°F) with floor-standing MTS Landmark test systems.

651.05F-0

MTS can design and build custom chambers for use with mechanical refrigeration, humidity control, salt spray and other applications as well as in special sizes to suit unique testing requirements, including integration with other test systems. Contact MTS for more details.

651.05F-02

651.06/.10

Series 651 chambers provide the sizes test teams need to perform accurate environmental testing on an array of specimens.

651.06/.10 Side

Model		А	В	C	D	E	F*	G*	Н	J	К	L	М
651.05F-01	mm	216	228	228	343	356	968	254	64	152	_	122	381
	in	8.5	9	9	13.5	14	38.1	10	2.5	6	_	4.8	15
651.05F-02	mm	286	452	305	419	584	1173	388	78	330	-	152	457
	in	11.25	17.8	12	16.5	23	46.2	15.30	3.06	13	-	6	18
651.06E-03	mm	356	559	432	489	692	897	508	102	305	397	254	524
	in	14	22	17	19.25	27.25	35.31	20	4	12	15.64	10	20.63
651.06E-04	mm	356	813	432	489	946	897	508	102	406	397	254	524
	in	14	32	17	19.25	37.25	35.31	20	4	16	15.64	10	20.63
651.10E-04	mm	356	660	432	514	845	948	508	102	305	397	254	528
	in	14	26	17	20.25	33.25	37.31	20	4	12	15.64	10	20.79

* Dimensions shown are approximate Dimensions shown in millimeters are rounded to closest millimeter.

MTS reserves the right to change dimensions without notice.

651 Dimensions

651 Specifications

Model	651.05F-01	651.05F-02	651.06E-03	651.06E-04	651.10E-04
Load Frame	Acumen 1	Landmark Bionix	Landmark	Landmark	Landmark
	Acumen 3	Acumen 3			
Chamber part number	058-052-704	058-052-702	100-639-950 (works with	100-639-952 (works with	100-639-954 (works with
	(US Plug)	(Acumen, US Plug)	494 FlexTest Controller	494 FlexTest Controller	494 FlexTest Controller
	058-052-703	058-052-701	100-639-951 (works with	100-639-953 (works with	100-639-955 (works with
	(WW Plug)	(Acumen, WW Plug)	494 FlexTest Controller)	494 FlexTest Controller)	494 FlexTest Controller)
		058-052-602 (w/table top	(will be supplied with	(will be supplied with	(will be supplied with
		legs, US Plug)	detrosting elements for the windowl	the window)	the window)
		058-052-601 (w/table top			
		legs, WW Plug)			
Cart part number [¶]	100-294-319#	100-294-319#	100-160-646	100-160-646	100-160-646
Test space (nominal)	100-297-346	100-297-346	100-213-156**	100-213-156**	100-213-156**
Test space (noninal)	210 mm V, 228 mm D.	305 mm D.	432 mm D.	432 mm D.	432 mm D.
	228 mm H	457 mm H	559 mm H	813 mm H	660 mm H
	(8.5 in W, 9 in D, 9 in H)	(11.25 in W, 12 in D, 18 in H)	(14 in W, 17 in D, 22 in H)	(14 in W, 17 in D, 32 in H)	(14 in W, 17 in D, 26 in H)
Removable "U-Plug" sections	Not included	Included	Included	Included	Included
Typical application		Material testing, including fa	atigue and fracture, tension,	, compression, flex/bend, et	C.
Air temperature performance*					
Temperature Values (min & max)	-151°C (-238°F) to	-151°C (-238°F) to	-129°C (-200°F) to	-129°C (-200°F) to	-129°C (-200°F) to
	350°C (662°F)	350°C (662°F)	315°C (600°F)	315°C (600°F)	540°C (1000°F)
Heating	Ambient to +350°C	Ambient to +350°C	Ambient to +315°C	Ambient to +315°C	Ambient to +540°C
	(+660°F) in 45 minutes	(+660°F) in 45 minutes	(+600°F) in 30 minutes	(+600°F) in 30 minutes	(+1000°F) in 70 minutes
LN_2 cooling	Ambient to -151°C	Ambient to -151°C	Ambient to -129°C	Ambient to -129°C	Ambient to -129°C
	(-238°F) in 45 minutes	(-238°F) in 45 minutes	(-200°F) in 26 minutes	(-200°F) in 26 minutes	(-200°F) in 26 minutes
Temperature gradient ^{t, ‡}	±3°C or less	±3°C or less	±2°C (±5°F)	±2°C (±5°F)	±2°C (±5°F) from
					-129° to 260°C
					(-200° to 500°F)
					±5°C (±10°F) from
					260° to 540°C
—	000 (505)	000 (505)	400 (005)	400 (005)	(500° to 1000°F
lemperature stability '	±2°C (±5°F)	±2°C (±5°F)	±1°C (±3°F)	±1°C (±3°F)	±1°C (±3°F)
Cooling requirements					
<i>LN</i> ₂ cooling inlet fitting	Male 1/2 in SAE 45° flare	Male 1/2 in SAE 45° flare	Male 1/2 in SAE 45° flare	Male 1/2 in SAE 45° flare	Male 1/2 in SAE 45° flare
LN ₂ pressure	0.15 MPa (22 psi nominal)	0.15 MPa (22 psi nominal)	0.15 MPa (22 psi nominal)	0.15 MPa (22 psi nominal)	0.15 MPa (22 psi nominal)
	0.21 IVIPa (30 psi max)				
Heater circuit power	208/230 V AC	208/230 V AC	208/230 V AC	208/230 V AC	208/230 V AC
nequirements	20 A circuit	20 A circuit	at least 25 A circuit	at least 25 A circuit	at least 35 A circuit
Weight	82 kg (180 lbs)	108 kg (250 lbs)	102 kg (225 lbs)	159 kg (350 lbs)	136 kg (300 lbs)
Light	None	120 V bulb	115 V bulb	115 V bulb	External 115 V bulb
		(40 watt recommended)	(40 watt recommended)	(40 watt recommended)	(40 watt recommended)

* Performance data derived with chamber empty and access holes blocked. Consult MTS Systems Corporation for temperature performance for testing specimens having high thermal mass.

** For Landmark 370.50 only.

¶ Consult MTS for cart information specific to your configuration.

Cart stand for table top load units.

t After 30 minute stabilization time.

‡ Due to large variety of possible test setups an air gradient is given. Specimen gradient is much less.

Includes:

- 1. Load frame
- 2. Controller
- 3. Handset
- 4. USB cable, handset cable
- 5. Enclosure jumper J11
- 6. Interlock jumper J14 7. Handset holder 8. Lower D clevis 9. D clevis pin (2)
- 10. J3 connector
- 12. J5 to J12 jumper 13. Wrench
 - 14. Rubber Mat
 - 15. Loadcell Cable

11. Shipping Document binder

				R	EVISIONS		
				DESC	CRIPTION	TTER	ON NO
M16X2.0	LIFTING POIN	15	-ADD M	E	NGR DATE	1	Ĕ
			FOR CRO BASEPL/ -ADD LC INCLUD	ATE. ADCE ES LIS	LL CABLE TO	в	.66600
			RWF		JKS 4/22/13		500
			REMOVEI PART NU A PLACE) BON MBER HOLDE	I FROM BUT LEFT IT WITH R TO CONTACT		3922
			ERC IF Q	UESTI	ONS ARISE.	U	500033
			MAS -CHANGE	LIFTI	KJG 7/6/2015 NG POINT TO		5
			-ADDED -CHANGE	LIFT L D TIT	ABELS LE IN TITLE BLOCK	۵	05098
			TJA		SPS 8/30/16		500
_							
	ł						
	ד ַ 73 ู่mn	n					
	[2.9]						
	<u>t t</u>						
	47 mm						
	[1.9]						
			SOURCE	/REF	-		
DETAIL C			DRAWIN	g OPR	- RIETARY DAT	A	_
SCALE 1 : 2			THE INFO	DRMA	TION AND DESIG	N(S) DEN	TIAL
			AND THE CORPOR REPROD	ATIO	PERTY OF MTS SY N AND MAY NOT B OR DISCLOSED I	STEN E US N AN	IS ED, Y
			BY MTS RESTRIC	SYSTI	AS GRANTED IN EMS CORPORATIO EXCLUDES INFOR	WRIT N. TI MAT	ING HIS ION
UNLESS OTHERWISE SPECI	FIED		WAS LEC	IN TH SITIM	ATELY IN THE PRI OF THE RECIPIEN	N UR OR T.	
MATERIAL DESCRIPTION	.XXX HOLE SIZE TO	LERANCE	drawn JJM	Cł	HECK ENGR	MF -	G
MATERIAL SIZE	0.000 O\ TO .750 TO +.010/002 +.0	/ÉR .750 O 1.500)15/003	DATE 07-05-1		DATE DATE 07-05-11	DA	TE
FINISH MASK	ANGLE ±2*	TITLE	0. 00-1		0, 00-11		
THREAD DEPTHS ARE TO MIN FULL THOS SCALE	X/Y ±1/4	WORKS	STATI	, ИС О	E/M,50KN,C	:43	.5
ORILL DEPTHS ARE TO FULL DIA OREMOVE BURRS AND SHARP EDGES MACHINED	U .XX ±.03	NEXT LE	VEL S	SIZE	NUMBER		REV
DO NOT SCALE PRINT SUBFACES 180	.XXX ±.010	PRODUCT (CODE	D	100-230-70	04	D
EDEN PRAIRIE, MINNESOTA U.S.A. O	ANGLE 🕀 🖂			_	SHEET 1 O	F	2

Т

	Model: C43.504	
Maximum Rated Force Capacity	kN,lbf	50 kN, 11000 lbf
Force Capacity Options	N, KN	100 N, 250 N, 500 N
		1 kN, 2.5 kN, 5 kN, 10 kN
		20kN, 30kN, 50 kN
	lbf	20, 50, 110, 220
		500, 1100, 2200
		4400, 6600, 11000
Frame Type	guide Columns	2
	loor-Standing/Bench- Top	Bench-Top
Test Zones	Single/Dual	Single
Maximum Test Speed	mm/min	750
	in/min	30
Minimum Test Speed	mm/min	0.005
	in/min	0.0002
Position resolution	mm	0.00006
	in	0.000024
Power requirements	V AC	200 - 230 V AC,
		12 Amps,
		50 / 60 Hz,
		2400 W
	Phase	1
Space Between	mm	420
Columns	in	14 54
wartical Tast Space	III	10.54
Standard Langth		1200
Standard Length		1200
	in	47.2
Crosshead Travel		
Standard Length	mm	1000
	in	39.37
Frame Height		
Standard Length	mm	1739
	in	68.46
Frame Width	mm	826
	in	32.52
Frame Depth	mm	768
	in	30.24
Weight		
Standard Length	kg	328
	lb	722
Shipping information		
Standard length Frame Dimensions - Crated (estimated)	mm	1970 x 1100 x 1120
	in	77.56 x 43.31 x 44.09
Weight - Crated	kg	600
	lb	1320

MTS Bionix® Tabletop Test Systems

Flexible, easy-to-use servohydraulic test systems feature Model 370.02 load frames in axial and axial/torsional configurations for characterizing biomaterials and medical components

Versatile Performance, Compact Design

Complete solutions designed for biomedical testing

Biomedical researchers and manufacturers rely on innovative biomaterials and components to help patients around the world achieve greater mobility and a higher quality of life. Before they are even used in clinical situations, these materials and components require rigorous testing to validate both performance and durability. Mechanical testing is also essential for ensuring compliance with industry and regulatory standards.

MTS Bionix[®] tabletop test systems are engineered to meet this need. These compact servohydraulic systems are particularly suited to evaluating the dynamic properties of an extensive range of biomedical materials and components. Highly versatile and easy to operate, Bionix tabletop test systems offer everything required to perform a full array of mechanical tests for biomedical applications, including highly stiff load frames, precise digital controls, proven software and a wide selection of grips, fixtures and extensometers.

Common Applications

BIOMATERIAL CHARACTERIZATION

- » Yield and ultimate strength
- » Creep and viscoelastic characteristics
- » Fatigue characteristics
- » Fracture toughness and fracture mechanics
- » Modulus of elasticity
- » Poisson's ratio
- » Wear characteristics
- » Coefficient of thermal expansion
- » Response characteristics

BIOMECHANICAL COMPONENT TESTING

- » Fatigue certification studies
- » Bone, joint and soft tissue studies
- » Implantable orthopaedic device studies
- » External prostheses studies
- » In vitro biomaterials studies

SIMULATION OF BIOLOGICAL FORCES

- » Kinematic studies of the knee joint
- » Wear studies of hip and knee implant materials
- » Biaxial spine studies
- » Upper body joint studies
- » Dental wear simulation
- » Biaxial fatigue of orthopaedic implants

Axial/Torsional

The axial/torsional configuration of the Bionix tabletop system enables biaxial testing, controlling torsional moments up to ± 250 N·m (± 2200 lbf·in) and total rotations of 270°. It is excellent for testing the durability and wear properties of components such as knee, hip and spine implants. When paired with specialized subsystems and accessories, it is capable of performing both simple and complex kinematics studies of skeletal tissue and orthopaedic constructs.

Axial

The axial configuration of the Bionix tabletop test system can be used to perform accurate and repeatable fatigue life and fracture growth studies, as well as tension, bending and compression tests of biomaterials. It runs tests up to ± 25 kN (5.5 kip) with standard displacements of ± 50 mm (± 2 in.), and can easily be configured for monotonic or fatigue testing.

Expert Service and Support

Comprehensive assistance ensures smooth, efficient operation

MTS fields one of the largest, most experienced service, support and consulting staff of any testing solution provider, to ensure your lab is quickly maximizing the utility of your system.

Trained technicians perform installation and operational checkout at your site and conduct informal, one-one-one training on operation and basic maintenance procedures. A software technical support and maintenance contract for your controller software is available with each system. A system warranty is included; with extended warranty contracts also available.

Depending on the plan you select, field service may include calibration, routine maintenance, extended system warranty service and priority technical support. MTS also provides extensive, regularly scheduled training programs conducted at MTS or your facility to ensure operators are familiar with all the capabilities of the hardware and software. To meet unique testing objectives, MTS testing expertise can help you develop custom test templates. In addition, our global service team also offers complete life cycle management to maximize the return on your technology investment and help you address new test requirements as cost-effectively as possible.

Load Frame Specifications

Bionix tabletop test systems incorporate Model 370.02 load frames that are available in standard or extended heights.

			MODE				
Load Frame Specifications	Diagram Detail	Units	370.02 Axial	370.02 Axial / Torsional			
Force capacity (rated dynamic force)		kN	25	25 kN / 250 N⋅m			
		(kip)	(5.5)	(5.5 kip / 2200 lbf·in)			
Available actuator ratings,		kN	15 , 25	15 kN / 150 N·m			
				25 kN / 250 N·m			
		(kip)	(3.3 , 5.5)	(3.3 kip / 1300 lbf·in)			
				(5.5 kip / 2200 lbf·in)			
Actuator dynamic stroke ₁		mm	100 , 150	100 mm / 270°			
				150 mm / 270°			
		(in)	(4, 6)	(4 , 6)			
$\label{eq:main_state} \mbox{Minimum vertical test space} - \mbox{standard height}_2$	A	mm	144	30			
		(in)	(5.7)	(1.2)			
$Maximum \ vertical \ test \ space - standard \ height_{_3}$	А	mm	827	714			
		(in)	(32.6)	(28.1)			
$\label{eq:model} \mbox{Minimum vertical test space} - \mbox{extended height}_{2}$	А	mm	398	284			
		(in)	(15.7)	(11.2)			
Maximum vertical test space – extended height_{3}	А	mm	1335	1222			
		(in)	(52.6)	(48.1)			
Working height ₄	В	mm	230 ₈	230 ₈			
		(in)	(9.1)	(9.1)			
Column spacing (test space width)	С	mm	460	460			
		(in)	(18.1)	(18.1)			
Column diameter	D	mm	76.2	76.2			
		(in)	(3)	(3)			
Base width	E	mm	622	622			
		(in)	(24.5)	(24.5)			
Base depth	F	mm	577	577			
		(in)	(22.7)	(22.7)			
Diagonal clearance – standard height $_{\rm s}$	G	mm	1750 ₈	1750 ₈			
		(in)	(68.9)	(68.9)			
Diagonal clearance – extended height ₅	G	mm	2250 ₈	2250 ₈			
		(in)	(88.6)	(88.6)			
Overall height – standard height ₆	Н	mm	1989 ₈	2185 _{8,9}			
		(in)	(78.3)	(86)			
${\rm Overall} \; {\rm height} - {\rm extended} \; {\rm height}_{\rm 6}$	Н	mm	2624 ₈	2693 _{8,9}			
		(in)	(103.3)	(106)			
Stiffness ₇		N/m	345 x 10 ⁶	345 x 10 ⁶			
		(lbf/in)	(1.95 x 10 ⁶)	(1.95 x 10 ⁶)			
Weight		kg	248	322			
		(lb)	(547)	(710)			

1. All load frame specifications listed in this chart are based upon the actuator ratings and dynamic stroke values indicated by bold text.

2. Minimum Vertical Test Space: Span between load cell and piston rod face when fully retracted at beginning of the dynamic stroke; crosshead down, no alignment fixture.

3. Maximum Vertical Test Space: Span between load cell and piston rod face when fully retracted at beginning of the dynamic stroke; crosshead up, no alignment fixture.

4. Working Height: Tabletop to top of T-slot table; includes standard FabCell isolation.

5. Diagonal Clearance: Hose height to tip of foot with FabCell; crosshead down.

6. Overall Height: From tabletop surface, including standard FabCell isolation, to top of the hoses or highest point on actuator; crosshead fully raised.

7. Measured at crosshead height of 600 mm (23.6 in).

8. For load frames with optional pneumatic /elastomeric vibration isolation mounts, add 37 mm (1.44 in) to dimensions B, G, and H.

9. For axial/torsional frames, add 152 mm (6 in) to dimension H, for 150 mm (6 in) stroke actuator.

M004

–LIFT DETAIL LABEL

 \oplus

DETAIL SCALE 1

Includes:

- 1. Load Frame
- 2. Controller
- 3. Handset
- 4. USB Cable, Handset Cable
- 5. Enclosure Jumper J11
- 6. Interlock Jumper J14 7. Handset Holder 8. Lower E Clevis 9. 2X E Clevis Pin 10. J3 Connector

11. Shipping Document binder

16. E to D Clevis Adapter

12. J5 to J12 jumper

- 13. E Clevis Wrench
- 14. Rubber Mat

15. Loadcell Cable

		REVISIONS					
	M30X3.5 LIFTING POINTS	[DESCRIPTI	ON	TTER	ON NO	
		- ADD MO FOR CROS	ENGR JNTING DI SHEAD AN	DATE MENSIONS	LE	1 EC	
		BASEPLAT -ADD LOA ADAPTER	E. DCELL CAB TO INCLUD	LE/CLEVIS ES LIST.	в	000939	
		RWF		4/22/13		20	
		- CHANGE M30X3.5 - ADDED 1 LABELS	OP VIEW V	VITH LIFTING		066	
		- CHANGE -ADDED D LIFT LABE	D TITLE IN ETAIL VIEV LS AND M3	TITLE BLOCK V E & F WITH 0X3.5 THRU	С	500050	
		RWF	JKS	4/22/13			
5							
	1						
	<u>_</u>						
[:	88 mm 3.5]						
	81 mm 100 mm						
	↓ ↓						
	28_mm						
	[1.1]						
		SOURCE/	- REF				
			; - DPRIET	ARY DAT	A		
С		THE INFO DISCLOSE AND THF	RMATION D HEREI	AND DESIG	N(S) DEN1 STEM	FIAL IS	
: 4		CORPORA REPRODU FORM EXC	TION AND CED OR D CEPT AS G	MAY NOT B ISCLOSED I RANTED IN	E USI N AN' WRIT	ED, Y ING	
		BY MTS S RESTRICT THAT IS I WAS LEEP	TON EXCL N THE PU	UDES INFOR UDES INFOR BLIC DOMAII	N. TI MATI N OR OR	HIS ION	
	UNLESS OTHERWISE SPECIFIED MATERIAL DESCRIPTION .XXX HOLE SIZE TOLERANCE	POSSESS	ON OF TH	E RECIPIEN	T. MF	G	
	0.000 OVER .750 MATERIAL SIZE TO .750. TO 1.500	JJM DATE	- DATE	JKS DATE	- DA	TE	
	+.010/002 +.015/003 FINISH MASK ANGLE ±2* TITLE	05-01-12	-	05-01-12	-		
		WORI /M,300	KSTAT KN,C4	ION- 5.305E			
	ORILL DEPTHS ARE TO MIN PULL THUS ORILL DEPTHS ARE TO FULL DIA REMOVE BURRS AND SHARP EDGES MACHINED	VEL SI	ZE NUM	BER		REV	
	DO NOT SCALE PRINT SURFACES XXX ±.010 THED MTS SYSTEMS CORPORATION THED PRODUCT	CODE	D 100)-251-62	29	С	
	EDEN PRAIRIE, MINNESOTA U.S.A. • ANGLE FROJ		SHE	ET 1 0	F	2	

	Model: C45.305E	
Maximum Rated Force Capacity	kN,lbf	300 kN, 66000 lbf
Force Capacity Options	N, KN	150 kN, 200 kN, 300kN
	lbf	33000, 44000, 66000
Frame Type	guide Columns	2
	floor-Standing/Bench- Top	Floor-Standing
Test Zones	Single/Dual	Single
Maximum Test Speed	mm/min	750
	in/min	29.53
Minimum Test Speed	mm/min	0.005
	in/min	0.0002
Position resolution	mm	0.000049
	in	0.0000019
Power requirements	V AC	380 - 480 V AC,
		20 Amps,
		50 / 60 Hz,
		9000 W
	Phase	3
Space Between Columns	mm	650
	in	25.59
vertical Test Space		
Baseplate to Crosshead		
Extended Length	mm	1840
	in	72.44
Crosshead Travel		
Extended Length	mm	1400
	in	55.12
Frame Height		
Extended Length	mm	2835
	in	111.61
Frame Width	mm	1365
	in	53.62
Frame Depth	mm	1100
	in	43.31
Weight		
Extended Length	kg	1695
	lb	3737
Shipping information		
Extended length Frame Dimensions - Crated (estimated)	mm	3220 x 1660 x 1660
	in	126.77 x 65.35 x 65.35
Weight - Crated	kg	2210
	lb	4862

3832 HARDNESS TESTER **DIGITAL ROCKWELL HARDNESS TESTER**

Bulletin 1834

Starrett

USB data output. The 3832 Digital Rockwell Hardness tester offers programmable scale esting in all • Automatic conversions to HB, HV, Superficial Rockwell Scales

METROLOGY SOLUTIONS

	0		
conversions, dwell time	es, statistical capabilities	and test counter	r. Capable of t
of the regular Rockwell	hardness scales.		
-			

· USB data output

This Digital Rockwell Hardness Tester with fully automated load/unload procedures affords highly sensitive and accurate readings. Micro computer controlled Touch screen with

FEATURES

- · Direct loading method with load-cell instead of dead-weight system
- · High speed test cycle
- Extremely accurate loading control
- · Cast iron body
- Touch screen controlled microcomputer

Accessories Included
C-scale Diamond Indentor
1/16" Ball Indentor
3- Certified HRC Test Blocks
1- Certified HRB Test Block
Test Table 5.87" (150mm)
Flat Anvil 2.5" (63mm)
Std. V-Anvil
Dust Cover
Accessory Case

Digital Rockwell Hardness Tester					
Cat. No.	EDP	Description			
3832	02042	3832 Hardness Tester			

Specifications	
Minor Load	10 Kgf
Major Load	60 Kgf, 100 Kgf, 150 Kgf
Test Force Application	Load cell closed loop
Test Force Control	Motorized
Resolution	0.1HR
Vertical Capacity	8.0" (203mm)
Throat Depth	7.8" (198mm)
Upper/Lower Limits Setting & Alarming	Yes
Height	22" (560mm)
Width	8" (200mm)
Depth	31" (790mm)
Weight (Net/Shipping)	225lbs / 250lbs
Operation Temperature	50°-95°F (10°-35°C)
Power Supply	Single phase, AC, 110-220 with manual change, 50-60Hz, 4A

NOTES:

- 1. USE EMBEDDED 🕖 3D MODEL FILE FOR AS EMBEDDED MODEL FILE ARE BOTH REQUIRE
- 2. UNLESS OTHERWISE SPECIFIED, LUBE AND 700-005-602, "STANDARD TORQUE VALUES
- 3. APPROXIMATE WEIGHT: 1296 lbs. [588 kg]
- 4. ASSEMBLE AND TEST ACTUATOR/HSM PER
- 5. ASSEMBLE AND TEST LOAD FRAME PER DO
- 6. ALIGNMENT FIXTURE AND LOAD CELL MOUI SHIP WITH FRAME FOR ONSITE INSTALLAT

SPECIFICATIONS:

MODEL #: 370.10 TEST SPACE WIDTH:533 TEST HEIGHT MINIMUM:140mm TEST HEIGHT MAXIMUM: 1283mm LOAD FRAME RATED CAPACITY:100 kN ACTUATOR FORCE CAPACITY:100 kN ACTUATOR DYNAMIC STROKE: 150mm ACTUATOR TOTAL STROKE:176mm ACTUATOR RATED FLOW: 227 LPM MANIFOLD RATED FLOW: 114 LPM ACTUATOR BEARING TYPE: NON-METALLIC STEPPED

		_						
	M 0	06		R			¥.	07
SEMBLY INFORMATION. THIS DRAWING	G AND ITS ASSEMBLY	<i>′</i> .	DRAWN	E	NGR	DATE	ПЕТТЕ	ECN P
TORQUE ALL FASTENERS PER MTS DOC	UMENT							
DOCUMENT #'S 700-004-071 & 700-004	4-072.							
CUMENT #'S 700-004-075 & 700-004-0	77.							
NTING HARDWARE NOT SHOWN. PACKA	GE AND							
ION.								
° Og								
A second			SOURCE/ DRAWIN	REF 3	100	-344-869	Ð	
			PRO				A V(S)	
			AND THE CORPORA REPRODU	PRO	PERTY N AND OR DI	OF MTS SYS MAY NOT B SCLOSED II	STEM E USI	S ED, Y
			FORM EX BY MTS S RESTRIC THAT IS	YSTE TION	AS GR MS CC EXCLU IE PUB	ANTED IN N PORATION DES INFOR	WRIT N. TH MATI N OR	ING HIS ION
			WAS LEG POSSESS	ITIM ION	ATELY OF THE	IN THE PRICE	OR T.	G
SEE BOM MATERIAL SIZE	0.000 01 TO .750 T	VER .750 0 1.500	BLH		- ATE	AJS	DAT	ΓE
FINISH MASK	ANGLE ±2*	U15/003 TITLE	1/6/17		-	1/6/17	-	_
THREAD DEPTHS ARE TO MIN FULL THDS SCALE	X/Y ±1/4 X ±.1	LOAD	FRAM	E-3 574	70.1 191	.0, NO I	_/C,	,
ORILL DEPTHS ARE TO FULL DIA REMOVE BURRS AND SHARP EDGES DO NOT SCALE PRINT	XX ±.03	NEXT LE	VEL S	IZE	NUMB	ER		REV
MTS SYSTEMS CORPORATION EDEN PRAIRIE, MINNESOTA U.S.A. • AN PD		PRODUCT	CODE	D	TOO.	-348-72 T 1 0	22 F :	А 1
, <u></u>						-	-	

Model 653 High-Temperature Furnaces

The right choice for easy, accurate high-temperature testing

- » Capable of achieving temperatures up to 1000°C (1832°F) in validated testing conditions
- » Multiple furnace heights accommodate diverse test requirements
- » Up to three independently controlled temperature zones
- » Stainless steel exterior with convenient clamshell design

To design products and components that perform reliably at the temperatures found in actual operating environments, engineers need to develop a detailed understanding of how material properties and behaviors change as temperatures rise and fall. MTS Model 653 High-Temperature Furnaces are a vital component of these test configurations. They offer the functionality operators need to generate accurate data, and a convenient design that optimizes productivity in the lab.

Model 653 furnaces are ideal for a wide variety of high-temperature tests, including tension, compression, bend and fatigue testing of metals, composites, ceramics and many other materials. The alumina and zirconia fiber insulation system minimizes heat loss and prolongs the life of the furnace. A center-split design enables easy access to both fixturing and specimens. Pivot bearings built into the mounting bracket ensure smooth opening and closing.

Each furnace includes the MTS digital PID Temperature Control System and a mounting bracket for load frames from MTS and other providers. These furnaces can be configured for one, two or three heating zones which can be independently controlled. In addition, all Model 653 furnaces can accommodate MTS high-temperature axial extensometers.

Easy Setup, Intuitive Operation

Model 653 high-temperature furnaces have a user-friendly design that helps operators perform setup tasks more quickly – without compromising test quality or accuracy. Features include:

Pre-cut insulation. Durable, lowmaintenance insulation for Model 653.03 and 653.04 furnaces comes pre-cut, so there is no need to handle the material in the lab. The insulation works well with different styles of extension rods, so it fits tighter and lasts longer. It is also more effective, reducing heat loss and eliminating the need for wool.

Safety interlocks. The grip water cooling circuit has flow switches that are integrated with the Model 409 temperature controller. These switches shut down the furnace to protect equipment and specimens in the event of a water supply failure.

Clamshell design. Model 653 furnaces streamline test setup and specimen changeover with a clamshell design that allows operators to work from the front of the furnace at all times. This design also improves furnace alignment, which is critical to achieving proper gradients.

Thermal gradient verification kit. Model 653 furnaces are compatible with optional accessories that make it easy to analyze specimen thermal gradients before testing. These include Type K thermocouples, thermocoupled specimens and a thermal data acquisition tool that links directly to a PC.

MODEL 409.83 TEMPERATURE CONTROLLER

- » Ergonomic design
- » Multiple mounting options
- » Compact design
- » Multiple level, self-tuning PID control
- » Includes SCR power relays
- » Digital communications available

Model 653.01

With a height of just 55 mm (2.2 in.), Model 653.01 is designed for tension, compression and fatigue testing of specimens as short as 100 mm (4 in.). The furnace incorporates a pair of silicon carbide heating elements arranged in a single zone. The temperature for this furnace ranges from 100°C to 1000°C (212°F to 1832°F)* in validated testing conditions.

Model 653.02

Model 653.02 has a height of 86 mm (3.4 in.) and is ideal for tension, compression and fatigue testing of specimens 150 mm (6 in.) or longer. The furnace uses two pairs of silicon carbide heating elements, which can be used to maintain one or two zones of control. An insulation plate between the upper and lower heating elements ensures reliable zone separation. The temperature for this model ranges from 100°C to 1000°C (212°F to 1832°F)* in validated testing conditions.

Model 653.03

Designed for tension, compression and fatigue testing of specimens 200 mm (8 in.) or longer, the Model 653.03 furnace has a height of 126 mm (5 in.). It features two pairs of silicon carbide heating elements, which can be used to maintain one or two zones of control. An insulation plate situated between the upper and lower elements helps ensure reliable zone separation. Pre-cut insulation reduces heat loss. This furnace is particularly well-suited for applications that require a lower thermal gradient on a tensile or fatigue specimen. The temperature for this furnace ranges from 100°C to 1000°C (212°F to 1832°F)* in validated testing conditions.

Model 653.04

Specify the Model 653.04 furnace for tension, compression, bend and fatigue testing of specimens that require hot grips or fixtures. Three pairs of silicon carbide heating elements are arranged in three zones of control. Insulation plates between the elements offer reliable zone separation, and pre-cut insulation helps reduce heat loss. This furnace is an ideal choice when test engineers need a very low thermal gradient on a tensile or fatigue specimen. The furnace is capable of achieving 100°C to 1000°C (212°F to 1832°F)* in validated testing conditions in validated testing conditions with MTS' standard high-temperature low-cycle and high-cycle fatigue solutions. Its height is 220 mm (8.7 in.).

*Temperatures may very depending on specimen geometry and material.

Specifications

Model	Maximum Temperature*	Minimum Temperature	Control Point Stability	Total Height
653.01	1000°C (1832°F)	100°C (212°F)	±1°C = ±2°F	55 mm (2.2 in)
653.02	1000°C (1832°F)	100°C (212°F)	$\pm 1^{\circ}C = \pm 2^{\circ}F$	85 mm (3.4 in)
653.03	1000°C (1832°F)	100°C (212°F)	$\pm 1^{\circ}C = \pm 2^{\circ}F$	126 mm (5 in)
653.04**	1000°C (1832°F)	100°C (212°F)	$\pm 1^{\circ}C = \pm 2^{\circ}F$	220 mm (8.7 in)

*Temperatures may vary depending on specimen geometry and material.

** Supports testing to ASTM E606-04e1, BSI 7270, JIS Z2279, AFNOR A03-403 or ISO 12106 requirements.

Model	Hot Zone Height	Hot Zone Width x Depth	Number of Zones
653.01	19 mm (.75 in)	50 x 50 mm (2 x 2 in)	1
653.02	50 mm (2 in)	50 x 50 mm (2 x 2 in)	1 or 2
653.03	90 mm (3.6 in)	62.5 x 62.5 mm (2.46 x 2.46 in)	1 or 2
653.04	185 mm (7.3 in)	62.5 x 62.5 mm (2.46 x 2.46 in)	1 or 3

Temperature Gradient Verification Kit Components

Model	Part Number
Thermocouple Data Acquisition Kit	100-255-716
Type K Thermocouple Connector Kit	100-255-714
Thermocouple Specimen	057-743-803
Thermocouple Welding Kit	100-256-698

Utility Requirements

3 KVA @ 100-125 or 200-240 VAC, 50-60 Hz. Voltage must be selected at time of order.

MTS Systems 14000 Technology Drive Eden Prairie, MN 55344-2290 USA Telephone: 1.952.937.4000 Toll Free: 1.800.328.2255 E-mail: info@mts.com www.mts.com ISO 9001 Certified QMS

Specifications subject to change without notice.

MTS is a registered trademark and Advantage, MTS Criterion and MTS Fundamental are trademarks of MTS Systems in the United States. These trademarks may be protected in other countries. RTM No. 211177.

©2021 MTS Systems 100-265-681c Furnace653 • Printed in U.S.A. • 12/21

М	0	0	8
IVI	U	U	U

Second Second Second Second		MODEL
Load Frame Specifications'	Diagram Detail	Acumen 12 A/T
Dynamic force ²		12000 N (2697 lbf)
Static force ²		8500 N (1910 lbf)
Dynamic torque rating		 ±120 Nm (1056 in-lb)
Static torque rating		 ±84.8 Nm (746 in-lb)
Actuator dynamic stroke		70 mm (2.75 in)
Angular displacement		±135° ±20 revolutions 0.001 rpm - 100 rpm continuous rotation to 100 rpm
Dynamic performance		≤100 Hz
Minimum test space height ³	A	0 mm (0.00 in)
Maximum test space height ⁴	A	810 mm (31.9 in)
Working height ^s	В) 815 mm (32.1 in)
Test space width (measured between columns)	с	460 mm (18.11 in)
Base plate design		T-Slot (industry standard: 14 mm)
Column diameter	D	76.2 mm (3 in)
Frame footprint width	E	651 mm (25.6 in)
Frame footprint depth ⁶	F	817 mm (32.2 in)
Overall width ⁶ (with frame-mounted controller)	G	805 mm (31.7 in)
Overall height ³	н	2810 mm (110.7 in)
Weight		1043 kg (2300 lb)
Noise level - typical*		62
Noise level - maximum*		78
Mounting		Floor: Vertical
Standard load cell		12 kN Accel Comp
Operating temperature		+5C° to +40C°
Cooling		Automated forced air & self contained water cooled
Electrical requirements ^e	Voltage - VAC Frequency - Hz Current - Amps Phase	200-240 50 - 60 38 Single

1. Specifications subject to change without notice.

- Verifiable with MTS compression spring test. Performance may vary depending on test type, test set-up, frequency, specimen, environment and other factors.
- Assumes standard system load cell installed, crosshead fully lowered and actuator fully extended to end of the dynamic stroke.
- Assumes standard system load cell installed, crosshead fully raised and actuator fully retracted to end of the dynamic stroke.
- 5. From table to top of work surface; without optional isolation pads.
- For systems with optional test area enclosure, add 98 mm (3.8 in.) to dimension F and 45 mm (1.8 in) to dimension G for overall system dimensions.
- 7. Measured with crosshead fully raised, without optional isolation pad.
- Typical usage at 1 m, free field. Noise level varies depending upon test type, specimen, environment and other factors.
- Acumen 1 current rated at 100 (200) VAC. Acumen 3 current rated at 200 VAC.

15

System Specifications

	Diagtam	The second second	MO	DEL	
Load Frame Specifications!	Detail	Acumen 3	Acumen 3 A/T	Acumen 12	Acumen 12 A/T
Dynamic force*		3000 N (670 Ibf)	3000 N (670 Ibb)	12000 N (2697 Ibf)	12000 N (2697 Ibf)
Static force*		2000 N (450 bf)	2000 N (450 b6)	9500 N (1910 Ibf)	9500 N (1910 Ibf)
Dynamic torque rating		-	#30 Nm (265 in-lb)	-	±120 Nm (1056 in-lb)
Static torgue rating		-	±21 Nm (195 in-b)	-	±84.8 Nm (746 in-Ib)
Actuator dynamic stroke		70 mm (2.75 ini	70 mm (2.75 in)	70 mm (2.75 ini	70 mm (2.75 ini
Angular displacement		-	#135" #20 revolutions 0.001 rpm - 100 rpm continuous rotation to 350 rpm	-	#135" #20 revolutions 0.001 rpm - 100 rpm continuous rotation to 100 rpm
Dynamic performance		>100 Hz	>100 Hz	>100 Hz	>100 Hz
Minimum test space height*	A	26 mm (1.02 in)	0 mm (0.00 in)	55 mm (2.17 ini	0 mm (0.00 in)
Maximum test space height*	Α	919 mm (32.24 in)	603 mm (22.74 in)	995 mm (33.8 in)	\$10 mm (31.9 in)
Working height ⁴	В	133 mm (5.24 in)	133 mm (5.24 in)	815 mm (32.1 in)	815 mm (32.1 in)
Test space width (measured between columnal	с	490 mm (18.11 in)	460 mm (18.11 in)	490 mm (18.11 in)	490 mm (18.11 in)
Base plate design		T-Slot (industry standard: 8 mm)	T-Slot (industry standard: 8 mm)	T-Slot (industry standard: 14 mm)	T-Slot (industry standard: 14 mm)
Column diameter	D	63.5 mm (2.5 in)	63.5 mm (2.5 in)	76.2 mm (3 in)	76.2 mm (3 in)
Frame footprint width	E	634 mm (24.96 in)	634 mm (24.96 in)	651 mm (25.6 in)	651 mm (25.6 in)
Frame footprint depth*	F	501 mm (19.72 in)	501 mm (19.72 in)	817 mm (32.2 in)	817 mm (32.2 in)
Overall width ⁴ (with frame-mounted controller)	0	764 mm (30.08 in)	764 mm (30.08 ini	805 mm (31.7 in)	805 mm (31.7 in)
Overall height?	н	1726 mm (87.95 in)	1726 mm (67.95 in)	2810 mm (110.7 in)	2810 mm (110.7 in)
Weight		188 kg (415 lb)	230 kg (507 lb)	963 kg (2100 lb)	1043 kg (2300 lbl
Noise level - typical*		47 cbA	47 cbA	62	62
Noise level - maximum*		69 cbA	69 dbA	78	78
Mounting		Tabletop: Vertical	Tabletop: Vertical	Floor: Vertical	Floor; Vertical
Standard load cell		3 kN Accel Comp	3 kN Accel Comp	12 kN Accel Comp	12 kN Accel Comp
Operating temperature		+5C* to +40C*	+5C* to +40C*	+5C*10+40C*	+5C* to +40C*
Cooling		Automated forced air	Automated forced air	Automated forced air & self contained water cooled	Automated forced air & self contained water cooled
Electrical requirements*	Voltage - VAC Frequency - Hz Current - Amps Phase	200-240 50-60 10 Single	200-240 50-60 20 Single	200-240 50 - 60 38 Single	200-240 50-60 38 Single

7. Specifications subject to change without notice.

 Verifable with MTS compression spring test. Performance may vary depending on test type, test servap, frequency, specimen, environment and other factors.

- Assumes standard system ked cell installed, crossheed fully kneered and actuator fully extended to end of the dynamic stroke.
- 4. Assumes standard system load cell installed, crosshead fully raised and actuator fully retracted to end of the dynamic stroke.
- 5. From table to top of work surface: without optional/solation pads.
- For systems with optional last area enclosure, add 98 mm (3.8 m) to dimension F and 45 mm (1.9 m) to dimension G for overall system dimensions.
- 7. Measured with crosshead fully raised, without optional isolation pad.
- Typical usage at 1 m, free field, Noise level varies depending upon test type, spectreen, environment and other factors.
- Acumen 1 current rated at 100 (200) WIC. Acumen 3 current rated at 200 WAC.

Environmental Requirements

All MTS Acumen load frames are intended for indoor use only. This indoor environment must conform to the following environmental specifications.

Parameter	Specification
Operating Temperature ¹	5° to 40° C (41° to 104° F)
Operating Humidity	5 to 85% Non-condensing
Storage Temperature	-18° to 49° C (0° to 120° F)
Maximum Storage Humidity	90% Non-condensing
Maximum Altitude	2000 m (6562 ft)
Pollution Degree	2
IP Rating	IP20
Overvoltage Category	II

Environmental Requirements

¹Take care when using heat producing accessories, such as ovens. Emitted heat from such devices may damage the MTS Acumen if not properly controlled.

Site Location

Before installation of the MTS Acumen system, ensure the final location meets the following requirements.

- The floor is able to support the weight of the frame (and the table for MTS Acumen 1 and MTS Acumen 3) and its computer components.
- The environment complies with the specifications for your specific model:
 - Operating temperature
 - Storage temperature
 - Humidity
 - Atmosphere
- The required power supply is available and is compatible with the electrical requirements for your specific model.
- Grounded electrical outlets are within the minimum distance requirement to the load frame location.
- A phone line or cell phone access is located within the general testing area so that users can call the MTS Service department directly from the testing area. It is also suggested that network drops, or digital phone lines, be within the general testing area.
- Ceiling clearance is adequate for the load frame, including the additional space necessary to lift and move the frame by either a forklift or crane.
- Location provides sufficient accessibility for routine maintenance: 1000 mm (3 ft).
- Employees are adequately trained to operate the load frame and its computer system.

Transporting

Before transporting the MTS Acumen system, ensure the following requirements are met.

- You have the correct number of packing boxes as stated on the packing list.
- Insurance coverage is secured or verified.
- You have the required equipment for the chosen transporting method.
- You have the appropriate packaging to protect the load frame when moving or relocating it.
- The pathway from the loading dock to the final site location has sufficient width and height to fit the frame and forklift (or crane).
- The floor area along the pathway to the final site location is able to support the weight of the frame and forklift (or crane).
- There are no loose accessories on the shipping skid or frame.
- Your equipment operators have the appropriate licenses and have complied with your local safety standards (for example, the appropriate training required by OSHA in the U.S.).

	æ.			N // O			R	EVISIONS		
				IVIU	09		DESC	CRIPTION	TTER	N N
						DRAW		NGR DATE	Ľ.	Ы
						TO DO	D.	A. DRAWING	A	08049
						JLD		JJV 2-26-13		5000
K ê							_	1		
M										
TH)								
)								
		•								
볩										
		>								
		1	\land	\geq						
PU			ſ	\geq						
		<u> </u>	المو							
		<u> </u>	°							
//			• •	.:						
$\langle \!\!\! \langle \!\!\! \rangle$			•	$\overset{\cdot}{\searrow}$						
	0									
K										
•										
			2 4 14		ידי חו					
QUIRED	FOR COMPLETE INTER	PRETATI		OF ASS	SEMBLY.					
AND TO	RQUE ALL FASTENERS	5 PER MT	'S D	OCUME	NT					
ALUES FC	R MECHANICAL ASSE	MBLY".								
TING WI PP HOSE	TH ELBOW (ITEM 19) TO PP PORTS ON ACT	SO PP H	OSE ASS	E (ITEM Y &	18)					
								-		·
LY UNLES	SS OTHERWISE SPECI	FIED.				SOURC DRAWI	E/REF	100-261-27	9	
NY OF TH	E HOLE PATTERNS PR	OVIDED	ON	THE LE	GS.			TION AND DESIG	A N(S)	
kg]						AND TH CORPO REPRO	HE PRO RATIO	PERTY OF MTS SY N AND MAY NOT E OR DISCLOSED	STEM SE US	ED, Y
						FORM E BY MTS RESTR	XCEPT SYST	AS GRANTED IN EMS CORPORATION EXCLUDES INFO	WRIT N. T RMAT	'ING HIS ION
	UNLESS OTHFI	RWISE SPECT	FIED			WAS LE POSSE	S IN TH EGITIM SSION	HE PUBLIC DOMAI ATELY IN THE PRI OF THE RECIPIEN	IN OR IOR IT.	
MAT	ERIAL DESCRIPTION		.xxx	HOLE SIZE	TOLERANCE	DRAW JLD	N CI	HECK ENGR - JJV	MF -	G
MAT	ERIAL SIZE		T(+.0	0.750 10/002	TO 1.500 +.015/003	DATE 2-22-1	3 C	DATE DATE - 2-26-13	DA	TE
FINI	SH 	MASK	ŝ	ANGLE ±2		FRAM	E-33	07 <u>41</u> YHD	мти	
• TH	READ DEPTHS ARE TO MIN FULL THDS	SCALE	RANCE	.X ±.1		1.1374191	47	330		J,
• DR • REI • DO	ILL DEPTHS ARE TO FULL DIA 10VE BURRS AND SHARP EDGES NOT SCALE PRINT	MACHINED SURFACES	TOLE	.XX ±.03	NEXT L	EVEL	SIZE		25	REV
M			THIR	.,,,,, ±.01 D E	PRODUCT	CODE	D	100-271-0	35	A 1
-	EDEN PRAIRIE, MINNESOTA	U.S.A. O	PRO1	¥ —	· I	-		Janeer I C		-

CEAST 9050 Pendulum Impoct System

Operating Instructions M74-17123-EN rev. B

The difference is measurable®

M010

COMPONENT IDENTIFICATION

In the following pages, a number of figures of the instrument can be found with identification of the main parts.

Instrument with pneumatic hammer brake/release devices and motorised hammer recovery system (model code 7614.000 can be equipped with the same microswitch on the front protection included on models option codes 7614.000C3...C7)

Additional plate (detail) for energies up to 50 J (option code 7610.010)

LAYOUT

ALL LINEAR DIMENSIONS EXPRESSED IN MM (INCHES) TUTTE LE DIMENSIONI LINEARI SONO ESPRESSE IN MM (INCHES)

CEAST 9050 - code 7614.000 - Manual version

890 (35.04)

1035 (40.75)

ALL LINEAR DIMENSIONS EXPRESSED IN MM (INCHES) TUTTE LE DIMENSIONI LINEARI SONO ESPRESSE IN MM (INCHES)

CEAST 9050 - code 7615.000 - Motorized version

400 (15.75)

POSITIONING

The instrument can operate according to the technical parameters specified if it is correctly placed and levelled on a USER's solid table or laboratory bench with a height between 700 and 900 mm.

CEAST 9050 total weight accounts for about 270 kg (2650 N) for the motorized version and, if supported by its four feet on a solid table, it can be used for testing with **0.5 J** to **25 J** hammers.

To enlarge the instrument operation field to **50 J** hammers, it must be solidly fastened to a block integral to the floor or increase its weight by installing the additional plate code 7610.010 under the base or using the optional table code 7610.015.

WEIGHT APPLIED ON THE SUPPORTS

CEAST 9050 ACTING WITH 0.5 TO 25 JOULES HAMMERS

The instrument (motorized version) weights about 270 kg (2650 N). Considering a uniform distribution of the weight, the load applied to each of the 4 feet is approx. 67.5 kg (665 N). The support diameter of each foot is 1 cm, which is equivalent to a surface area of 0.785 cm².

CEAST 9050. Support feet position

CEAST 9050 ACTING WITH 0.5 TO 50 JOULES HAMMERS

The instrument (motorized version) weights about 390 kg (3830 N) including the additional plate. Considering a uniform distribution of the weight, the load applied to each of the 4 feet is approx. 97.5 kg (960 N). The support diameter of each foot is 1 cm, which is equivalent to a surface area of 0.785 cm².

CEAST 9050 for 0.5 to 50 J energy

The surface on which the instrument is placed must be able to support a minimum weight of 124 kg/cm² (1220 N/cm²) in correspondence of each support foot.

LEVELLING

The instrument is provided for with four adjustable support feet and two spirit levels (see figures below) for levelling.

To perform this operation, follow instructions in the paragraphs below:

- a) Take two 30-mm face spanners.
- b) Open the instrument protective cover using the handle.
- c) Visually inspect the position of longitudinal spirit level from the relevant reference lines.
- d) If the spirit level is not centred inside the lines, act on the feet on instrument left side, by using two 30-mm face spanner at the same time.
- e) Lift protections and rotate two screws by the same number of revolutions to reach the level required.
- f) Repeat instructions from paragraph a) to e) included and modify the transverse level by acting on two front feet.
- g) Once levelled, check that two spirit levels are centred inside the reference lines and the four feet are in contact with the support surface.
- h) Calibrate the instrument using any hammer and verify that the value indicated by the hammer, when in release position, is 150.0°. Otherwise, adjust the support feet so as to obtain such value.

Double spirit level for instrument levelling

EQUIPMENT/TABLE (OPTION) CODE 7610.015 LEVELLING

If the equipment CEAST 9050 is placed and fastened onto the table (option) code 7610.015, level it using the double bubble level fitted at the bottom of the equipment and adjusting the table support feet (see figure on the right) following the instructions in paragraph Levelling.

Counternut -

Nut -

Adjustable support foot (x4)

STABILITY

The instrument is stable if its base is placed on a flat surface.

The CUSTOMER is responsible for verifying that the resistance of the support surface is suitable for the instrument weight

CLEANING

It is not necessary to remove protective substances (such as grease or oil on surfaces) from the instrument.

Anyway, in case of external fouling during assembly operation, clean the surfaces with a soft cloth and non-corrosive, non-dangerous detergents, especially preventing any damage to the painted surfaces.

In any case, the safety standards provided for by the cleaning substance manufacturer must be strictly complied with.

For cleaning the instrument, follow the procedure described in "Maintenance" chapter.

MATERIALS AND PRODUCTS

The instrument mainly consists of iron, steel, copper and light alloys.

The electric components and cables comply with the international standards.

The instrument is not set up for operation with noxious or flammable materials. The CUSTOMER must check that the operating materials comply with this requirements.

Material disposal is under responsibility of the CUSTOMER in compliance with the environmental standards of the COUNTRY where the instrument is placed.

Don't Litter. Recycle

COMMISSIONING

This chapter contains the instructions to be followed to operate the equipment before performing any type of test.

CONNECTION TO THE ELECTRIC LINE

Authorized personnel: OPERATOR

- a) Check that the network frequency and voltage comply with specifications on the instrument's data plate (see Chapt 1).
- b) Check that the switch in the instrument back side is on "**O**" position.
- c) Insert the power supply cable plug according to local standards into the instrument outlet.
- d) Insert the instrument power supply cable plug into the electric line outlet.
- e) Close the electric line (wall) safety switch.

Power supply cable (example)

CONNECTION TO THE PNEUMATIC LINE

Authorized personnel: **OPERATOR**

<u>Please note</u>: CEAST 9050 codes 7614.000C3/C6/C7 e 7615.000 are provided with pneumatic system.

- a) Insert the compressed air delivery pipe in the air inlet fitting. To perform this operation: press with your fingers the (green) collar at the end of the fitting, insert the pipe and release the collar.
- b) Set the pressure to 5,5 bar using the specific pressure regulator. To set the pressure:
 - release the regulator knob pushing it upward;
 - set the pressure to the required value rotating the knob clockwise or counterclockwise if the value is exceeded. The pressure value is indicated by the pressure gauge.
 - press on the knob to return it to the lock position.

Please note: the shut-off butterfly valve may be used to close the compressed air inlet and discharge the circuit of the instrument without disconnecting the pipe from the fitting. When the butterfly of the shut-off valve is in "Closed" position, it can be locked in that position by means of a padlock. This solution ensures maximum safety for the personnel during maintenance works.

Pressure control and compressed air filtering unit

MTS Exceed® E22 Series Pendulum Impact Test Systems for Metals Highly reliable and stable impact testing for metals

Features

- Rugged cast iron frame absorbs shock and vibration
- Reliable disc brake for quick pendulum braking
- New pendulum structure design that helps prevent stuck samples
- Ergonomic control panel with touchscreen display
- High-resolution, frictionless encoder for accurate ineasurement of impact angle
- Safety enclosure with access switch that locks the pendulum if enclosure is opened during a test
- » CE, USTC compliance

The rugged yet versatile MTS Exceed Pendulum Impact Test Systems for Metals are ideal for measuring impact resistance of metal specimens. With an easy-to-operate control system, stable transmission system, reliable disc brake, new pendulum and frame design, these systems execute accurate, reliable Charpy impact tests.

Conducting impact tests requires careful consideration of safety requirements, and these systems include several features to maximize safe and reliable operation. The transmission system uses precision bearings and two-stage reducer for smooth and steady pendulum operation. The system has an interlock feature that will stop the pendulum in the event of power loss, or if the machine enclosure is open.

The MTS Exceed Pendulum Impact Test Systems provide a solid foundation for establishing global standardized testing procedures. The multi-language interface and compliance with global safety and ergonomic standards make it a good choice for global institutions and corporations. These systems can be quickly configured, delivered and installed to meet your specific testing requirements; and all MTS Exceed systems are backed by the MTS global service and support team. This highly experienced team is committed to maintaining system uptime and operational efficiency.

By integrating a solid test frame with high-resolution electrical control and comprehensive safety features, the MTS Exceed E22 Series Pendulum Impact Test System for Metals provides highly reliable testing capabilities for QA/QC environments and various high strength tests. Examples of metals material test standards that can be met with the MTS E22 Pendulum Impact Test System for Metals

Examples

Standard	Description
GB/T 229-2007	Charpy Pendulum Impact Tester Method
JJG 145-2007	Pendulum impact Tester
ASTM £23-12c	Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
ISO 148-1-2009	Metallic materials - Charpy pendulum impact test

Pendulum (without striker)

	Pendulum Energy	Pendulum Part Number
ISD	150J	100301699
1S0	3003	100301700
ISO	450J	100301702
ASTM	150J	100301699
ASTM	300J	100301700
ASTM	4503	100301702

Pendulum Striker

	Striker Part Number
ISO (R2 mm)	100304355
ISO (88 mm)	100282954
ASTM	100304353

Specifications

	E22.452
Maximum impact energy	450J
Pendulum pre-elevation	150°
Minimum angle resolution	0.025°
Distance between pendutum	
center and impact point	750 mm
Impact speed	5.24 m/s
Dimension of the main tester	
(WxHxD)	2240 x 902 x 2145 am
Weight	1000 kg
Impact test result, digital display	Impact energy (kJ)
	Impact strength (kJ/m²)
Functions	Friction loss correction
	Automatic calculation of the pendolum length
	Brake
	Linkable printer
	Linkable PC
Interface	RS 485
Power supply	200-240 V AC, 5A, 50/60 Hz, 1 kW, single phase

MTS Systems Corporation

14000 Technology Drive Eden Prairie, MN 55344-2290 USA

Tolaphona: 1 952-937-4000 Toll Tree: 1-800-328-2255 Fax: 1-952-937-4515 E-mail: Info@ms.com

www.mits.com ISO 9001 Cartified DMS Specifications subject to change without notice

MTS and Exceed are registrated trademarks of MTS Systems Corporation in the United States. These trademarks may be protocold in other countries. RTM No. 211177.

© 2016 MTS Systems Corporation. 100-308-285 ExceedE22Impact. Printed in U.S.A. 2/16

Easy-to-Use Systems

MTS Exceed systems are equipped with many time-saving features. Floor-standing models have dual zone designs that save testing time by eliminating the need for fixture changes between tensile and compression tests. MTS TestSuite TW software facilitates the accurate and repeatable mechanical testing of materials, components and finished goods. It combines the versatility to address unique and complex test requirements along with ease-of-operation to provide a seamless testing experience.

Guided test setup

With MTS TestSuite TW Essential (TWS) software, test setup is extremely easy. Using a highly visual interface, the software guides the entire process from pre-test to post-test and allows the user to input specimen details and calculations along the way.

One-direction calibration

These systems require calibration in one direction only, which greatly minimizes the time and effort needed to maintain and calibrate the load frame.

Convenient, ergonomic handsets

MTS handsets facilitate streamlined test setup by enabling operators to perform standard system control functions such as start, stop, pause and crosshead positioning while standing close to the test specimen. The handset can display test status messages, system performance messages, and test results. Two programmable function keys are set up in the software as digital inputs, allowing users to define test functions such as start test, pause and hold position.

The handset features a compact, ergonomic design for both right-handed and left-handed operators, plus a large text display that provides information at a glance.

Exceptional Value in its Class

MTS Exceed 40 systems are capable of performing the heavy load of test tasks found in an industrial manufacturing environment. With features and control capabilities typically found on higher-end model load frames, these systems provide superior value for the investment.

System safety features

To help ensure operator well-being and compliance with the latest international safety directives, MTS Exceed systems are designed to accommodate a variety of safety features, including:

- » Integrated control pod
- » System status light indicates whether the load frame drive is energized and ready for testing
- » E-stop
- » Test control handset
- » Mechanically adjustable limits that stop the crosshead at predetermined points
- » Motor overheat device that automatically turns off the motor power supply
- » Limit-setting for load, extension, strain or any other data channel

Durable, easy-to-maintain test space

MTS Exceed systems feature durable, protective rubber matting to extend the life and enhance the maintainability and utility of the system test space. Series 40 systems include heavy work surface mats that are designed to protect the load frame base and facilitate easy test space cleanup and maintenance. Molded edges on the mats prevent tools from rolling off, and an integrated groove pattern channels spills and debris away from the work area.

Load cell savings

The dual-test zone design allows one load cell to be used for two types of test on the same load frame. This feature not only saves testing time, but it reduces overall load cell expense for the lab.

Electromechanical Universal Test Systems

Choose from a comprehensive line of compact and reliable electromechanical systems for low- to medium-force monotonic testing

MTS Exceed Series 40 systems feature a complete selection of universal test systems for meeting a wide range of monotonic production testing requirements. Highly reliable and easy to operate, these systems employ responsive, low-vibration MTS electromechanical drives and integrated, digital closed-loop controls to test in load, position and strain control at force capacities ranging from 5 N to 600 kN.

Series 40 systems are available in a variety of compact, high-stiffness single and dual column tabletop configurations for low- to medium-force testing, or robust dual column floor-standing configurations for medium- to high-force testing. Easy-to-use MTS TestSuite TW software, a large and growing library of standards-compliant test methods, and a full complement of accessories extend the utility of these systems across a broad spectrum of materials, including:

» Plastics

- » Wood and paper products
- » Thin films
 - Fibers and threads
- » Adhesives
- » Foam
- » Elastomers
- » Biomaterials

- " Wood and paper prod
- » Thin metals
- » Wire
- » High-strength metals
- » Components
- » Fasteners
- » Composites

E42

Rated force capacity: 5 kN **Applications:** Steel wire, plastics, fine wire, fibers and threads, biomaterials, thin films, adhesives, foam, packaging, paper products, consumer products.

SERIES 40 SYSTEM KEY FEATURES

- » Wide selection of high stiffness single and dual column load frame configurations
- » High speed, low vibration MTS electromechanical drives
- » World class, maintenance free AC servomotor and amp
- » Precision, pre-loaded ball screws
- » Non-clutched drives, rated for full speed at maximum force
- » High-resolution, digital closed-loop controls (integrated into load frame)
- » Convenient test setup and control handset
- » Versatile, easy-to-use MTS TestSuite TW software with standards-compliant test template library (ASTM, ISO, DIN, EN, BS, and more)

- » Load cells with TEDS self-identification capabilities
- » Complete selection of grips, fixtures, environmental systems and extensometers (optional)
- » Dual-zone test space (Models E44 and E45) reduce setup time
- » Anti-rotation grip/fixture mounting
- » Optional T-slot table
- Automatic limit checking of crosshead position, overload, over-temperature, over-voltage, etc.
- Durable test space protection

E45.105

Rated force capacity: 100 kN **Applications**: Plastics and metal materials.

E43

Rated force capacity: 10 kN **Applications**: Plastics, rubber, and other non-metal materials.

E45.305

Rated force capacity: $300 \ kN$ Applications: Metal materials.

E44

Rated force capacity: 30 kN Applications: Metal and non-metal materials.

E45.605

Rated force capacity: 600 kN Applications: Metal materials.

MTS Exceed Series 40 Specifications - Common

Low Profile Force Accuracy* (bending beam & shear beam)	$\pm 0.5\%$ of applied force	± 1.0% of applied force			
Low Profile Force Range** (bending beam & shear beam)	1 to 100% of rated force capacity	0.5 to 1% of force rated capacity			
S-Beam Force Accuracy*	± 1.0% of a	pplied force			
S-Beam Force Range**	1 to 100% of rat	ed force capacity			
Rated maximum force at max. test speed	10	10%			
Rated maximum test speed at maximum force	10	0%			
Speed accuracy	Set speed < 0.01 mm/min: speed a Set speed ≥ 0.01 mm/min: speed a	ccuracy is within ± 1.0% of set speed ccuracy is within ± 0.5% of set speed			
Position accuracy	Withir	± 0.5%			
Strain accuracy*** (depending on extensometer)	± 0.5% of a	pplied strain			
Security protection	Over-force, travel limits, over-voltage and others				
Over force protection	10%				
Data acquisition rate	Up to 2500 Hz				
Control loop rate	5000 Hz				
Environmental requirements (For indoor use only) Operating temperature Operating humidity Storage temperature Maximum storage humidity Maximum altitude	5° C to 40° C (41° F to 104° F) 5% - 85% non-condensing -18° C to 49° C (0° to 120° F) 90% non-condensing 2000 meters				
Motor & drive system	AC Ser	vo Motor			
Ballscrews	Pre-loaded				
Position measurement	Encoder				
User Digital Inputs/Outputs (DIO)	4 user Digital Inputs and 4 user Digital Outputs				
Encoder capacity	4 En	coders			

* Applicable onsite calibration services are available to meet ISO 7500-1, ASTM E4. ** Range dependent upon controller settings and operating environment. *** Extensometer calibration services are available to meet ISO 9513, ASTM E83.

MTS Exceed Series 40 Specifications - Comparative

Model		E42.503*	E43.104	E43.504	
Maximum rated force capaci	ty	5 kN (1100 lbf)	10 kN (2200 lbf)	50 kN (11000 lbf)	
Force capacity options		5 N, 10 N, 20 N, 50 N, 100 N, 200 N, 500 N, 1 kN, 2 kN, 5 kN	5 N, 10 N, 20 N, 50 N, 100 N, 200 N, 500 N, 1 kN, 2 kN, 5 kN, 10 kN	20 kN, 30 kN, 50 kN	
		1 lbf, 2 lbf, 5 lbf, 10 lbf, 20 lbf, 45 lbf, 110 lbf, 220 lbf, 450 lbf, 1100 lbf	1 lbf, 2 lbf, 5 lbf, 10 lbf, 20 lbf, 45 lbf, 110 lbf, 220 lbf, 450 lbf, 1100 lbf, 2200 lbf	4500 lbf, 6700 lbf, 11000 lbf	
Frame type		Table top	Table top	Table top	
Test zones (single/dual)		Single	Single	Single	
Maximum test speed		508 mm/min (20 in/min)	508 mm/min (20 in/min)	508 mm/min (20 in/min)	
Minimum test speed		0.001 mm/min (0.00004 in/min)	0.001 mm/min (0.00004 in/min)	0.001 mm/min (0.00004 in/min)	
Position resolution		0.000051 mm (0.0000022 in)	0.000041 mm (0.0000016 in)	0.00006 mm (0.0000023 in)	
Vertical test space Standard		700 mm (27.6 in)	1000 mm (39.4 in)	1000 mm (39.4 in)	
crosshead travel	Extended	1000 mm (39.4 in)	1300 mm (51.2 in)	1300 mm (51.2 in)	
Space between columns		100 mm (3.94 in)*	340 mm (13.4 in)	420 mm (16.5 in)	
Frame height	Standard	1300 mm (51.18 in)	1617 mm (63.7 in)	1770 mm (69.7 in)	
	Extended	1600 mm (63.0 in)	1917 mm (75.5 in)	2070 mm (81.5 in)	
Frame width		642 mm (25.28 in)	681 mm (26.81 in)	820 mm (32.3 in)	
Frame depth		582 mm (22.91 in)	588 mm (23.15 in)	775 mm (30.5 in)	
Weight Standard		120 kg (265 lb)	120 kg (265 lb)	325 kg (716 lb)	
	Extended	130 kg (287 lb)	130 kg (287 lb)	345 kg (761 lb)	
Power requirement		Single-phase 200-240 V AC,	Single-phase 200-240 V AC,	Single-phase 200-240 V AC,	
		3 Amp 50/60 Hz, 600 W	3 Amp 50/60 Hz, 600 W	6 Amp 50/60 Hz, 1600 W	

ISO 7500 Class 0.5 / Class 1 or ASTM E4

* For single-column load frame this measurement denotes the distance from the center of the clevis to the front of the column cover.

E42.503 (5 kN)

Model	E44.304	E45.105	E45.305	E45.605
Maximum rated force capacity	30 kN (6600 lbf)	100 kN (22000 lbf)	300 kN (66000 lbf)	600 kN (132000 lbf)
Force capacity options	100 N, 250 N, 500 N, 1 kN, 2 kN, 5 kN, 10 kN, 20 kN, 30 kN	50 kN, 100 kN	200 kN, 300 kN	200 kN, 300 kN, 600 kN
	20 lbf, 50 lbf, 110 lbf, 220 lbf, 450 lbf, 1100 lbf, 2200 lbf, 4400 lbf, 6600 lbf	11000 lbf, 22000 lbf	44000 lbf, 66000 lbf	44000 lbf, 66000 lbf, 132000 lbf
Frame type	Floor-standing	Floor-standing	Floor-standing	Floor-standing
Test zones (dual)	Dual	Dual	Dual	Dual
Maximum test speed	508 mm/min (20 in/min)	508 mm/min (20 in/min)	250 mm/min (9.84 in/min)	254 mm/min (10 in/min)
Minimum test speed	0.001 mm/min (0.00004 in/min)	0.001 mm/min (0.00004 in/min)	0.001 mm/min (0.00004 in/min)	0.001 mm/min (0.00004 in/min)
Position resolution	0.000040 mm (0.0000015 in)	0.000041 mm (0.0000016 in)	0.000017 mm (0.0000007 in)	0.000016 mm (0.0000006 in)
Vertical test space crosshead travel Standard Extended	1150 mm (45.28 in) 1450 mm (57.09 in)	1050 mm (41.34 in) 1350 mm (53.15 in)	1100 mm (43.30 in) 1400 mm (55.12 in)	1300 mm (51.2 in)
Space between columns	400 mm (15.75 in)	600 mm (23.62 in)	580 mm (22.83 in)	750 mm (29.52 in)
Frame height Standard Extended	1862 mm (73.3 in) 2162 mm (85.12 in)	2133 mm (83.98 in) 2433 mm (95.79 in)	2360 mm (92.91 in) 2660 mm (104.72 in)	2820 mm (111.02 in)
Frame width	845 mm (33.27 in)	1230 mm (48.43 in)	1215 mm (47.83 in)	1660 mm (65.35 in)
Frame depth	716 mm (27.19 in)	870 mm (34.25 in)	960 mm (37.80 in)	1272 mm (50.08 in)
Weight Standard Extended	435 kg (959 lb) 450 kg (992 lb)	1400 kg (3086 lb) 1450 kg (3197 lb)	1700 kg (3748 lb) 1750 kg (3758 lb)	3500 kg (7716 lb)
Power requirement	Single-phase 200-240 V AC, 6 Amp 50/60 Hz, 1200 W	Single-phase 200-240 V AC, 10 Amp 50/60 Hz, 2000 W	Three-phase 380-415 V AC, or 440-480 V AC, 6.8 Amp 50/60 Hz, 5000 W	Three-phase 380-415 V AC, or 440-480 V AC, 10 Amp 50/60 Hz, 5000 W

System Brochure

Torsion Testing Systems

Torsion Testing Systems

Precision, Versatility, and Performance.

Torsion Testing Machines for static and fatigue testing.

eXpert 9000 Series Table Top Torsion Testing Machines are available in vertical or horizontal orientations for static and fatigue testing applications. Horizontal systems feature a fixed spindle with sliding tail stock while vertical systems employ a sliding drive spindle. Maximum torsional stiffness and minimal axial friction is achieved with a roller slide frame design. A reaction torque transducer can be mounted to the tail stock or a rotary torque transducer can be mounted to the drive spindle to accommodate a wide range of applications. In the case of the horizontal machine, the tail stock can be left free floating or clamped during testing. A dead weight pulley system is provided with all torsion testers for applying uniaxial tensile or compressive forces. All torsion testers feature unlimited rotation in both directions.

eXpert 9618 (300Nm) Static, Horizontal

- Table-top models are offered in capacities up to 300Nm (2,650 inlb).
- Models are available for static (9600 Models) and fatigue (9900 Models) testing.
- Test bone screws, fasteners, orthopedic devices, shafting, tubing, wires and other materials with confidence.

Customizable - Backed by superior engineering and a willingness to tailor a system to meet your needs.

The length of the test bed or frame structure can be modified to accommodate varying specimen lengths and sizes. Test frames can be provided to allow the machine to operate in both a vertical or horizontal orientation. Load cells and displacement sensors can be incorporated to measure axial forces and spindle displacement. Faster spindle speeds are also available.

Custom eXpert 9600 Series 110Nm Static Torsion Testing System for measuring the torsional properties of a large articulating arm (not shown). A rotary torque transducer is mounted to the drive spindle. The drive spindle can be adjusted vertically and has a head to tail stock open range from 0-1,800mm (0-72in). The machine base is 2,210mm (87in) square.

2,210mm (87in)

0-1,800mm Adjustable

eXpert 9612 (20Nm)

Static, Vertical

51 Morgan Drive Norwood, MA 02062 Tel: (781) 769-0850 Fax: (781) 769-0884 Sales@ADMET.com www.ADMET.com

Test with Certainty.

Torsion Testing Systems

Precision, Versatility, and Performance.

System Specifications

Model		9610	9612	9613	9614	9618	9910	9911	9912	
		Static	Static	Static	Static	Static	Fatigue	Fatigue	Fatigue	
Torque Capacity	Nm 5 ty lbft 3. inlb 4		20 14.7 177	50 36.5 442	100 73.7 885	300 5 221 3.6 2,650 44		10 7.4 88	25 18 220	
Maximum Speed at 110 VAC ¹	rpm	200	90	100	70	40	1,500	1,500	750	
Minimum Speed	rpm	0.01	0.0045	0.005	0.0035	0.002	0.075	0.075	0.038	
	deg/min	3.6	1.6	1.8	1.26	0.72	27	27	13.5	
Maximum Torque at Full Speed	Nm	5	20	50	100	300	5	10	25	
	inlb	44	177	442	885	2,650	44	88	220	
Angle Resolution	deg	0.0014	0.0008	0.0008	0.0008	0.0008	0.09	0.09	0.09	
Maximum Angle	deg	infinite	infinite	infinite	infinite	infinite	infinite	infinite	infinite	
Head to Tailstock	in	0-30	0-30	0-30	0-30	0-30	0-30	0-30	0-30	
Opening Range ²	mm	0-760	0-760	0-760	0-760	0-760	0-760	0-760	0-760	
Base to Center	in	4	4	4	4	4	4	4	4	
Line Test Space ³	mm	100	100	100	100	100	100	100	100	
Horizontal Frame	in	12 x 36	12 x 36	12 x 36	12 x 36	12 x 36	12 x 36	12 x 36	12 x 36	
Footprint	mm	304 x 1,220	304 x 1,220	304 x 1,220	304 x 1,220	304 x 1,220	304 x 1,220	304 x 1,220	304 x 1,220	
Vertical Frame	in	18 x 18	18 x 18	18 x 18	18 x 18	18 x 18	18 x 18	18 x 18	18 x 18	
Footprint	mm	457 x 457	457 x 457	457 x 457	457 x 457	457 x 457	457 x 457	457 x 457	457 x 457	
Vertical Frame	in	42	42	42	42	42	42	42	42	
Column Height	mm	1,066	1,066	1,066	1,066	1,066	1,066	1,066	1,066	
Maximum Power	VA	330	330	880	1,100	2,750	1,110	2,200	3,300	
Single Phase	VAC	110-220	110-220	110-220	110-220	110-220	110-220	110-220	220	
Voltage	Hz	50,60	50,60	50,60	50,60	50,60	50,60	50,60	50,60	
ADMET will modify a system to meet your needs.										

Notes:

- 1. At 220 VAC the maximum speed will double.
- 2. Head to tail stock opening range is calculated without torque cells, grips and fixtures. Larger openings can be accommodated by ordering an extended frame.
- 3. Base to center line test space is the distance from the top surface of the base plate (horizontal orientation) or column (vertical orientation) to the center line of the rotating spindle. Larger test spaces can be accommodated upon request.

eXpert 9912 (25Nm) Fatigue Testing System

51 Morgan Drive Norwood, MA 02062 Tel: (781) 769-0850 Fax: (781) 769-0884 Sales@ADMET.com www.ADMET.com

Test with ADMET.

Torsion Testing Systems

Precision, Versatility, and Performance.

Controls and Software

All ADMET eXpert 9000 Series Torsion Testing Machines are equipped with either one of two digital controllers. MTESTQuattro[®], our most advanced testing system, is a PC-based unit that offers a wide range of flexibility in control, data acquisition, analysis, and reporting. The eP2 Digital Controller (available on 9600 series static models only), a standalone touch panel unit, offers a balance between performance and simplicity. Both controllers feature 8 kHz servo update periods and programmable log rates to 1 kHz.

Controller	MTESTQuattro®	eP2 Digital Controller			
Interface	PC Software	Touch Panel			
Analysis	Extensive data results library with built-in ASTM/ISO calculations.	Standard calculation package for basic testing requirements and QC testing.			
Test Procedures	Use built-in or create an unlimited number of simple to complex test procedures.	Save up to six test procedure in eP2.			
Reporting	Store and organize all data. View and print user customized test reports with chart and tables.	Post test, view current results on eP2 screen and send data to PC for reporting using optional GaugeSafe software			

MTESTQuattro® running on Windows

Accessories

ADMET offers a full line of grips, fixtures, collets, chucks, environmental chambers and temperature controlled baths. For more accurate strain measurements, extensometers or deflectometers can be provided.

Service and Calibration

eXpert 9613 with

fluid bath

Training and Service - ADMET testing systems are easy to learn and use. We provide free introductory on-line training and, if needed, additional on-site training. Our manuals, tutorials, and trouble shooting guides are updated regularly. We provide free phone and email product support through the life of the system. ADMET's on-site service and calibration team includes over 100 individuals in over 40 locations in the USA.

Calibration - Customers can setup calibration contracts with ADMET or a private party. All services are A2LA accredited and meet ISO/IEC Guide 17025 and ANSI/NCSL Z540.

51 Morgan Drive Norwood, MA 02062 Tel: (781) 769-0850 Fax: (781) 769-0884 Sales@ADMET.com www.ADMET.com

Copyright 2017. All rights reserved. ADMET, Inc. Norwood, MA 02062 USA

www.ADMET.com

					REVISIONS				
		515.30 HPU which is the model of pump.	e 60ŀ	HP	DRAWN	DESC	RIPTION	LETTER	ECN NO
					-UPDATE ON SHEI -REMOVE B RAP	D MAN ET 4 ED REF.	IFOLD DIM. . DIM. ON SHEET 3 PJR 10/14/16	в	500052195
	$\begin{pmatrix} 11\\ 1 \end{pmatrix}$)							
Image: Contract of the set of the	1	2							
SHOWN.	2	2 NOTE: COMMONING OPTIC)N						
Image: constraint of the second se		SHOWN.							
Image: specified bit in the specified bi	6	P							
UNLESS OTHERWISE SPECIFIED	0								
THE INFORMATION AND DESIGN(S) DISCUSSED HEREIN ARE CONFIDENTIAL ADDICUSSED HEREIN ADDICUSSED HEREIN ADDICUSSED HEREIN ADDICUSSED HEREIN ADDICUSSED HEREIN ADDICUSSED HEREIN ADD					SOURCE DRAWIN	E/REF NG	- - IETARY DAT	A	
UNLESS OTHERWISE SPECIFIED POSSESSION OF THE RECIPIENT. MATERIAL DESCRIPTION .xxx HOLE SIZE TOLERANCE DRAWN CHECK ENGR MFG 0.000 OVER.750 DATE					THE INF DISCLO AND TH CORPOF REPROD FORM E BY MTS RESTRIC THAT IS WAS LE	ORMA SED H E PRO UCED VCED XCEPT SYSTE CTION IN TH	TION AND DESIG EREIN ARE CONFI PERTY OF MTS SY V AND MAY NOT B OR DISCLOSED I AS GRANTED IN 'MS CORPORATIO EXCLUDES INFOF EF PUBLIC DOMAII ATELY IN THE PRI	N(S) DENT STEM E USE N AN WRIT N. TH MATI N OR OR	TIAL IS ED, Y ING HIS ION
0.000 TO 1.500 +.010/002 OVER .750 TO 1.500 +.010/002 DCP DATE - P3R - FINISH +.010/002 +.015/003 OVER .750 04/22/15 DATE DATE <th>F</th> <th>UNLESS OTHERWISE SPECIFIED</th> <th>DRAWN</th> <th></th> <th>OF THE RECIPIEN</th> <th>T. MF</th> <th>G</th>	F	UNLESS OTHERWISE SPECIFIED	DRAWN		OF THE RECIPIEN	T. MF	G		
Image: Second	ī	0.0/ MATERIAL SIZE TO .: +.010/	00 O' 750 T '002 +.1	VER .750 O 1.500 015/003	DCP DATE	5	- PJR DATE DATE	- DAT	TE
N • DRILL DEPTHS ARE TO FULL DIA • DEMOUGE BURRAS AND SHARP EDGES NONE UM UM NEXT LEVEL SIZE NUMBER REV • DO NOT SCALE PRINT MACHINE CES MACHINE UM UM .xx ±.03 NEXT LEVEL SIZE NUMBER REV • DO NOT SCALE PRINT MTS SYSTEMS CORPORATION BEDEN PRAIRIE, MINNESOTA U.S.A. • MIRD ANGLE ⊕ PRODUCT CODE 515 D MOET 700-007-770 B		TINISH MASK SINGLE WASK TO MIN FULL THOS SCALE	NGLE ±2* Y ±1/4 ±.1	TITLE	CONF AWIN	FIGU	IRATION 15,40/60HF	<u>-</u>	
MTS EDEN PRAIRIE, MINNESOTA U.S.A. • ANGLE TO 515 SHEET 1 OF 4		DRILL DEPTHS ARE TO FULL DIA REMOVE BURRS AND SHARP EDGES DO NOT SCALE PRINT MACHINED SURFACES INTE	x ±.03		VEL - CODF		NUMBER 700-007-72	70	^{REV}
		EDEN PRAIRIE, MINNESOTA U.S.A. •	♥	515		_	SHEET 1 O	F 4	4

		DN	ų.	è		
		N F	NGP		LETTE	ECNN
	DRAW	in El	NOK	DATE		Ē
0						
LEAR SPACE						
ITHOUT COMMONING						
4.0						
510]						
IN. RECOMMENDED						
LEAK SPACE ITH COMMONING						
4						
1						
I						
1						
I						
I						
	<u> </u>					
1	SOURC	E/REF	-			
1	DRAWI		-		^	
	THE IN	FORMA		ND DESIG	A N(S)	
	DISCLC AND TH	SED HI		ARE CONFI	DEŃ STEM	ITAL IS ED
I	REPROI	DUCED	OR DI AS GR	SCLOSED I	Ñ AN WRIT	ING
1	BY MTS RESTRI	SYSTE	EXCLU	RPORATIO	N. TI RMAT	HIS ION
	WAS LE	EGITIM/	ATELY OF THE	IN THE PRI	OR T.	
MATERIAL DESCRIPTION	DRAW	N CH	IECK	ENGR	MF	G
0.000 OVER .750 MATERIAL SIZE TO .750 TO 1.500	DCP	- E D.	- ATE	DATE	DA	TE
+.010/002 +.015/003	04/22/1	15	-	07/13/15	-	
FINISH MASK ANGLE ±2° TITLE	CON	FJGU	IRAT	ION		
• THREAD DEPTHS ARE TO MIN FULL THDS SCALE	RAWI	NG-5	15,4	0/60HI	þ	
ORILL DEPTHS ARE TO FULL DIA NONE		CITE	NUMB	FP		REV
IN REMOVE BURKS AND SHARP EDGES IMACHINED I PLAN - 100 I NEXT L	EVEL	SIZE I				
KEMUVE BURKS AND SHARP EDGES MACHINED SURFACES MACHINED VAX V	EVEL		700	-007-7	70	В
• REMUVE BURKS AND SHARP EDGES MACHINED SURFACES ↓ MAX MEXI (SURFACES) • DO NOT SCALE PRINT SURFACES ⊥XXX ±.010 • MTS SYSTEMS CORPORATION EDEN PRAIRIE, MINNESOTA U.S.A. • THIRD PRODUCT PRODUCT	-EVEL T CODE .5	D	700	-007-7	70 F	B 4

MODULE REMOVAL: MULTIPLE ITEMS REMOVED FOR CLARITY

VIEW A-A

								REVISIONS						
								DESCRIPTION						
							DRAWN	ENG	GR D/	ATE	E	ECN		
WITH GAS STRUTS FULLY EXTENDED WITH GAS STRUTS FULLY EXTENDED COVER SHOWN IN OPEN POSITION COVER SHOWN IN OPEN POSITION IN														
WITH GAS STRUTS FULLY EXTENDED.														
WITH GAS STRUTS FULLY EXTENDED COVER SHOWN IN OPEN POSITION COVER SHOWN IN OPEN POSITION COVER SHOWN IN OPEN POSITION COMMONING OPTION TILT 11.7 (29) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														
WITH GAS STRUTS FULLY EXTENDED WITH GAS STRUTS FULLY EXTENDED COMMONING OPTION COMMONING OPTION CO														
WITH GAS STRUTS FULLY EXTENDED COVER SHOWN IN OPEN POSITION. COMMONING OPTION TIL (297) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3														
		COVER SHO	WN IN O	PEN	POSIT	ION.								
	Y													
		\mathbf{A}												
Соммоніна ортіон соммоніна ортіон сомоніна ортіон	N/	\mathbf{A}												
COMMONING OPTION COMMONING OP	<i>%\\</i>													
	SM-	\rightarrow \setminus												
COMMONING OPTION COMMONING OP														
COMMONING OPTION COMMONING OP														
COMMONING OPTION COMMONING OP														
COMMONING OPTION HOWN COMMONING OPTION HILT, 11.7, 12.97] 4.4 9.4 9.9 1.1.7, 1.1.7, 1.1.7, 1.2.97] 4.4 9.4 1.1.7, 1.2.97] 4.4 9.9 1.1.7, 1.2.97] 4.4 9.9 1.1.7, 1.2.97] 4.4 1.1.7, 1.2.97] 4.4 1.1.7, 1.2.97] 1.1.7, 1.1.7, 1.2.97] 1.1.7, 1.1.7, 1.2.97] 1.1.7, 1.1.7, 1.2.97] 1.1.7, 1.1.7, 1.2.97] 1.1.7, 1.1,1														
	\mathbf{X}													
COMMONING OPTION HILT, 1.7,														
COMMONING OPTION SHOWN Commoning option SHOWN 11.7 [297] 3.9 [99] Commoning option Shown Commoning option Commoning option Co		\mathbf{Y}												
COMMONING OPTION HIGH COMMONING OPTION HIGH COMPANY AND														
COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING OPTION HOWN COMMONING COMMON														
COMMONING OPTION SHOWN 11.7 [297] 4.4 89] 3.9 [99] SUBJECTION 5000 515 CONTIGUENTIAL SUBJECTION SUBJE														
COMMONING OPTION SHOWN -1.1.7 [297] -2.4 89] -3.9 [99] 														
COMMONING OPTION SHOWN 														
COMMONING OPTION SHOWN 														
COMMONING OPTION SHOWN COMMONING OPTION SHOWN COMMONING OPTION SHOWN COMMONING OPTION SHOWN COMMONING OPTION SHOWN COMMONING COMMONI														
COMMONING OPTION SHOWN 														
COMMONING OPTION SHOWN 														
COMMONING OPTION SHOWN The property of mis systems Soluce: Ref Soluce: Ref Sol														
COMMONING OPTION SHOWN 11.7 [297] 11.7 [297] 3.9 [99] SOURCE/REF DRAWING SOURCE/REF SOURCE/REF SOURCE/REF SOURCE/REF SOURCE/REF DRAWING SOURCE/REF SO														
COMMONING OPTION SHOWN 11.7 [297] 11.7 [297] 3.9 [99] 3.9 [99] 3.9 [99] 3.9 [99] CORRELATED IN ADD DESIGNST DISCLOSED FREEIN ARE CONFIDENTIAL THE INFORMATION AND DESIGNST THE INFORMATION AND DESIGNST DISCLOSED INFORMATION THIS INFORMATION AND DESIGNST DISCLOSED INFORMATION THE INFORMATION AND DESIGNST DISCLOSED INFORMATION THIS INFORMATION INFORMATION THIS INFORMATION INFORMA	I													
SHOWN		🖌 🛛 🖯 соммон	ING OPT	ION	I									
Image: Source reference Source reference Source reference		SHOWN												
11.7 2.4 89 3.9 [99] SOURCE/REF DRAWING SOURCE/REF DRAWING 1.1.7 [99] NOPRIETARY DATA THE INFORMATION AND DESIGNS) DISCOURCE/REF DISCOURCE/REF DISCOURCE/REF SOURCE/REF DISCOURCE/REF DISCOURCE/REF SOURCE/REF DISCOURCE/REF NOTE NOTE DISCOURCE/REF SOURCE/REF DISCOURCE INT NOTE SOURCE/REF SOURCE/REF DISCOURCE INT NOTE DISCOURCE INT MATERIAL DESCRIPTION	à.,													
11.7 [297] 7.4 [39] 3.9 [99] PROPRIETARY DATA THE INCOMENTION AND DESIGN(S) DISCLOSED HERREN VOLTON AND THE PUBLIC PROPORTIVO AND SUSCED IN ANY REPRODUCTOR AND MAY NOT BE USED, REPRODUCTOR AND MAY	¥.													
11.7 [297] 7.4 [39] 3.9 [99] Source/Ref - DRAWING DROPRIETARY DATA THE INFORMATION AND DESIGN(S) DISCLOSED HARING DISCLOSED HEREIN ARE CONFIDENTIAL AND THE PROPERTY OF MIS SYSTEMS CORPORATION AND MAY NOT BE USED, REPRODUCED OR DISCLOSED IN ANTY RESTRICTION EXCLUDES INFORMATION HAT IS IN THE PUBLIC DOMAIN OR POSSESSION OF THE RECIPIENT. WINESS OTHERWISE SPECIFIED WINES THERWISE SPECIFIED WINES SPECIFIED MARLINE TO PULL DATE ONE OF THE RECIPIENT. WINES STEE TOLERANCE DATE DATE DATE DATE DATE DATE DATE DATE)/													
11.7 [297] 7.4 89] 3.9 [99] PROPRIETARY DATA THE INFORMATION AND DESIGN(S) DISCLOSED HEREIN ARE CONFIDENTIAL NAME NOT SCUESE DI HARY MARCHINES INTERVISE SPECIFIED DATE DATE DATE DATE DATE DATE DATE DATE	ſ													
Image: state to min Full those is solved uses and base process is non-solved use and the non-solved use process is non-solved use and the non-solved use and the non-solved use and the non-solved use and the non-solved uses and base process is non-solved use and the non-solved userial trans and the no-solved use and the no-solved use and the n		11.7												
7.4 89] - 7.4 3.9 [99] - PROPRIETARY DATA THE INFORMATION AND DESIGN(S) DISCISSED HERRING CORPORATION AND MAY NOT BE USED, OPROPRITION AND DESIGN(S) THE INFORMATION THE PROPERTY OF MITS SYSTEMS OPROPRITION AND DESIGN(S) THE INFORMATION THE PROPERTY OF MITS SYSTEMS MATERIAL DESCRIPTION XXX HOLE SIZE TOLERANCE OPROPRITICAL ADDRESSION OF THE RECIPIENT. MATERIAL SIZE OPROPRITICAL ADDRESSION OF THE RECIPIENT. MITTLE MARK NOT SOLE SIZE TOLERANCE OPRIL ODATE DATE OPRIL ODATE DATE OPRIL ODATE DATE OPRIL ODATE DATE OPRIL														
7.4 89] - 7.4 89] - 89] - - 99] PROPRIETARY DATA THE INFORMATION AND DESIGN(S) DISCLOSED HEREN'S SYSTEMS AND THE PROPERTY OF MITS SYSTEMS - MATERIAL SIZE - -														
7.4 89]														
7.4 89] - 89] - - 99] - SOURCE/REF DRAWING - - 199] - - PROPRIETARY DATA - THE INFORMATION AND DESIGN(S) DISCLOSED HEREIN ARE CONFIDENTIAL NEXT EVENT - - 0.000 - - 0.000 OVER -750 - MATERIAL DESCRIPTION - - - - MATERIAL SIZE - 0.000 - - MATERIAL SIZE - - - - MATERIAL SIZE - 0.100/-102 - 0.100/-102 0/VER -750 - - - MATERIAL SIZE - 0.100/-102 - - - - - MATERIAL SIZE - 0.100/-102 - - - - - -														
89]	7.4	-												
3.9 SOURCE/REF DRAWING PROPRIETARY DATA THE INFORMATION AND DESIGN(S) DISCLOSED HEREIN ARE CONFIDENTIAL DISCLOSED HEREIN ARE CONFIDENTIAL SOURCE/REF UNLESS OTHERWISE SPECIFIED WILLESS OTHERWISE SPECIFIED WATERIAL DESCRIPTION XXXX HOLE SIZE TOLERANCE UNLESS OTHERWISE SPECIFIED OVER .750 MATERIAL DESCRIPTION XXXX HOLE SIZE TOLERANCE HIREAD DEPTHS ARE TO MIN FULL THDS SCALE INTE MASK ONODE ANGLE ±2* TITLE CONFIGURATION DATE DATE DATE DATE DATE DATE ONODE NEXT LEVEL UNLESS CORPORATION XXX ± 0.01 NEXT LEVEL SIZE MATERIAL SIZE XXX ± 0.01 NEXT LEVEL DATE ONTE SUZE SUZE NEXT LEVEL DATE DATE DATE DATE DATE DATE DATE DATE DATE NEXT LEVEL SIZE NEXT LEVEL SIZE	[פּס.							-						
[99] PROPRIETARY DATA THE INFORMATION AND DESIGN(S) DISCUSSED HEREIN ARE CONFIDENTIAL DISCUSSED HEREIN ARE CONFIDENTIAL DISCUSSED HEREIN ARE CONFIDENTIAL UNLESS OTHERWISE SPECIFIED PROPRIETON WATERIAL DESCRIPTION XXXX HOLE SIZE TOLERANCE MATERIAL SIZE 0.000 +.010/-002 VERT 750 DATE DATE MATERIAL SIZE 0.100/-002 +.010/-002 +.015/-003 +.010/-002 +.015/-003 HIREAD DEPTHS ARE TO MIN FULL THOS SCALE NEXT LEVEL SIZE INFERMENT INFORMATION 180V MAGKE THIRD DO NOT SCALE PRINT MINESOTA U.S.A. • MATERIAL SIZE INFERMENT MAGKE INFORMATION NEXT LEVEL SIZE <t< td=""><td></td><td>3.9</td><td></td><td></td><td></td><td></td><td>SOURCE/I</td><td>REF -</td><td></td><td></td><td></td><td></td></t<>		3.9					SOURCE/I	REF -						
THE INFORMATION AND DESIGN(S) DND THE PROPERTY OF MTS SYSTEMS CORPORATION AND MAY NOT BE USED, REPRODUCED OR DISCLOSED IN ANY FORM EXCEPT AS GRANTED IN WRITING BY MTS SYSTEMS CORPORATION. THIS BY MTS SYSTEMS CORPORATION AND DESIGN(S) DO NOT SCALE PRINT UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED MATERIAL DESCRIPTION XXX HOLE SIZE TOLERANCE DRAWN CHECK MATERIAL DESCRIPTION XXX HOLE SIZE TOLERANCE MATERIAL DESCRIPTION XXX HOLE SIZE TOLERANCE MATERIAL DESCRIPTION XXX HOLE SIZE TOLERANCE DRAWN CHECK MASK NOT SOLE PRINT ITILE CONFIGURATION DRAWING-515,40/60HP INTER MASK NEXT LEVEL SIZE NUMBER NEXT LEVEL SIZE NUMBER PRODUCT CODE SILS DI MTS SYSTEMS CORPORATION NEXT LEVEL SIZE NUMBER <		. [99]					PRC	PRIE	TARY	DATA	4			
AND THE PROPERTY OF MTS SYSTEMS CORPORATION AND MAY NOT BU USED, REPRODUCED OR DISCLOSED IN AWY FORM EXCEPT AS GRANTED IN WRITING BY MTS SYSTEMS CORPORATION. THIS BY MTS SYSTEMS CORPORATION WATERIAL DESCRIPTION UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED UNDER UNDER UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED							THE INFO	RMATIO	ON AND E	ESIGN CONFIL	(S) DENT	TIAL		
FORM EXCEPT AS GRANTED IN WRITING BY MTS SYSTEMS CORPORATION THATE IS IN THE PUBLIC DOMAIN OR WAS LEGITIMATELY IN THE PRIOR POSSESSION OF THE RECIPIENT. UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL SIZE 0.000 .000 .000 OVER .750 .000 MATERIAL SIZE FINISH INTE MARK MARK INTE MARK MARK NATERIAL SIZE INTE MARK MARK INTE MARK MARK INTE MARK MARK NOTE MARK AND SHARP EDGES NEXT LEVEL MACHINED 1800/C INTE MTS SYSTEMS CORPORATION NEXT LEVEL 1800/C INTE MTS SYSTEMS CORPORATION NAGLE @ MTE MINNESOTA U.S.A. •							AND THE CORPORA	PROPE	RTY OF M	TS SYS	USE	S ED,		
RESTRICTION EXCLUDES INFORMATION THAT IS IN THE PUBLIC DOMAIN OR WAS LEGITIMATELY IN THE PRIOR POSSESSION OF THE RECIPIENT. MATERIAL DESCRIPTION .XXX HOLE SIZE TOLERANCE DRAWN DCP CHECK PNGR MFG 0.000 +.010/.002 0.000 +.010/.002 0VER.750 +.010/.002 DATE DATE DATE DATE 0.4/22/15 - 07/13/15 - DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE <							FORM EXC BY MTS S	CEPT AS	S GRANTE	D IN W	VRIT	ING HIS		
UNLESS OTHERWISE SPECIFIED WATERIAL DESCRIPTION MATERIAL SIZE MATERIAL SIZE MATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE HATERIAL SIZE							THAT IS I	10N EX N THE TIMAT	KCLUDES PUBLIC D ELY IN TH	INFORI OMAIN	MATI I OR DR	ION		
Image: Product Description .xxx HOLE SIZE TOLERANCE DRAWIN CHECk ENGR MFG 0.000 OVER.750 DCP - PJR - MATERIAL SIZE +.010/.002 +.015/.003 OVER.750 DATE		UNLESS OTHE	RWISE SPECI	IED			POSSESSI	ON OF	THE REC	IPIENT				
MATERIAL SIZE TO 300 (±0.1500) Date (±0.10/.002) Date (±0.10/.002) Date (±0.10/.002) Date (±0.150) Date (±0.150) </td <td></td> <td>MATERIAL DESCRIPTION</td> <td></td> <td>.xx</td> <td>N HOLE SIZE</td> <td>OVER 750</td> <td>DCP</td> <td>CHEC</td> <td>LK EN</td> <td>ык JR</td> <td>MF -</td> <td>6</td>		MATERIAL DESCRIPTION		.xx	N HOLE SIZE	OVER 750	DCP	CHEC	LK EN	ык JR	MF -	6		
Image: Second secon		MATERIAL SIZE		т +.0	0.750 10/002	TO 1.500 +.015/003	DATE 04/22/15	DAT	E DA	TE 3/15	DAT	ΓE		
Image: Construct of the state to min full the state to mi		FINISH	MASK		ANGLE ±2	TITLE	07/22/10		10//1	5,15	-			
THREAD DEPTHS ARE TO MIN FULL THDS ORLIL DEPTHS ARE TO MIN FULL THDS NOTE NORT EURSS AND SHARP EDGES SURFACES MTS SYSTEMS CORPORATION MTS SYSTEMS CORPORATION MTS PAIRIE, MINNESOTA U.S.A. • THREAD MTS SYSTEMS CORPORATION MTS SYS			\bowtie	VCES	X/Y ±1/4] _	CONF	IGU	RATIO	N	D			
• REMOVE BURRS AND SHARP EDGES MACHINED SURFACES 180√ TXX ±.0.3 NEXT LEVEL SIZE SURFACES NUMBER REV • DO NOT SCALE PRINT INTS SURFACES 180√ .XXX ±.010 700-007-770 B MTS MTS SYSTEMS CORPORATION EDEN PRAIRIE, MINNESOTA U.S.A. • AMICLE ← C 515 515 SHEET 3 OF 4		• THREAD DEPTHS ARE TO MIN FULL THDS • DRILL DEPTHS ARE TO FULL DIA	SCALE NONE	LERAL	.X ±.1	- <u> </u>		G-5.	10,40/	UUH	r -			
Image: Non-angle and angle and angle and angle an		REMOVE BURRS AND SHARP EDGES DO NOT SCALE PRINT	MACHINED SURFACES		.XX ±.03	NEXT LI	- SI	ZE NI			ſ	REV		
EDEN PRAIRIE, MINNESOTA U.S.A. • PROJ 515 SHEET 3 OF 4		MTS MTS SYSTEMS CORPOR		THIF		PRODUCT	CODE	ΣĽ	00-00	/-//	U			
		EDEN PRAIRIE, MINNESOTA	U.S.A. o	PRO.	Ţ	ין 51! סוי		S	HEET	3 OF	2	4		