Like many of my peers, I am often asked what I am studying in college. When I answer with German language, international studies, and microbiology, what the majority of people hear is a list of mismatched subjects. Many people don’t realize that a degree in both a science and a language can be a great way into a major company that works internationally. But job opportunities aside, what good does it do one to study such extraneous fields? After all, education is not only about jobs. Education helps us develop as intellectual individuals. So what’s the point in spending an education going back and forth between unrelated materials?

I’ve heard throughout my education that people learn differently. Those who are well grounded with facts and think with numbers supposedly excel in the sciences, while those who are more creative and think in words allegedly prefer the humanities. As I progressed through school, this seemed to hold true enough, but why, then, are we taught both sciences and humanities throughout compulsory education and then suddenly expected to choose one over the other at the college level? Surely different minds prefer one method of thinking over the other, but does one method ever become less important to the mind than the other? This is something I struggled with as I found a course of study that suited me. Though my interests span both sciences and humanities, I felt as though I was supposed to fit into only one learning category.

For the first time this year, I had upper level courses in both my German studies major and my microbiology minor. Initially, this was very stressful for me. I felt as though I was being stretched incredibly thin between two schools of thought that were so different. On one hand, I was studying German philosophers and the abstract ideas they left behind. This class required a great deal of creativity and learning to express my own intangible ideas in writing. On the other hand, I was learning about the functions of microorganisms at a molecular level, dealing with ideas that are concrete and have been scientifically proven. For one class I was worried about writing a paper. For the other I was worried about taking a Scantron™ test. I felt like I was sprinting back and forth between opposite sides
of the spectrum of thought, and my asthma was kicking in. That is, until in my microbiology class we
watched *Playing God* (Films Media Group, 2003), a video that interviews the scientists responsible for
the advent of genetic engineering and discusses the ideas that fueled this revolutionary technology.

I was dreading video day. It was being shown during my earliest morning class, and we were
asked to show up a few minutes early so as to be sure to have enough time to view the film in its
entirety. I felt somewhat cheated. Our instructor was so lazy as to show a video instead of lecturing, yet
we were to come early to class? Having seen plenty an educational documentary throughout my school
career, I had a pretty clear idea of what was in store. It would be at least an hour of struggling to stay
awake through nondescript images of test tubes, double helices and lab mice, narrated by a cliché,
deep, lulling voice. This video was no exception. However, no sooner were we five minutes into the
viewing than a certain quote caught my attention and changed the way I felt about my classes
completely:

“DNA produced this brain, the brain understands DNA, so DNA eventually came to understand
itself.”

It was mentioned nonchalantly in the introduction, before even the title frame was shown, one
of those phrases meant to convince listeners to pay attention and spark curiosity as to the content of
the video. I suppose it was effective, in a way. My curiosity was sparked, however I spent the next
several hours thinking not about the science behind genetic engineering, but about this radical new
idea.

What an exciting revelation! Through the remarkable process of evolution, simple particles have
developed into sentient life, capable of understanding those particles from whence it came. We are able
to study the very materials that make us up, that give us the ability to study. Our DNA is made up of
these proteins, carbohydrates and nucleic acids, which in turn are made up of many atoms. Individually,
these are inanimate objects, yet somehow they come together to form the mechanisms for information processing and thought. Through evolution, simple particles have become self-aware. For the first time, my microbiology and philosophy classes seemed to belong together, hand in hand.

I realized then that while the sciences use concrete methods and calculations to find answers, the questions for which these answers are being sought push the limits of human imagination and creativity. Even though scientific endeavors are based in tangible evidence, they are fueled by abstract ideas and goals that aim to take us beyond our verifiable world. We would not have advances in scientific exploration if we didn’t have a desire to exceed what has previously been imagined. We would not be able to expand passed what we know in a philosophical sense if we didn’t have factual evidence on which to base our current reality. The one requires the other.

And it works the same way with education. It is important to support one method of learning with the other. I am finding that German language, international studies, and microbiology have many more connections than originally thought, and it seems now that they belong together. Though my mind may prefer one method of learning over the other, each still needs the help of the other to thrive. Instead of feeling strung between opposite poles, I feel as though I’m supported from both sides. Much like evolution brought DNA to understand itself, my education has helped me to develop in a way that allows me to understand my own learning. Now I truly know what I’m studying.