“My Script”

Madeline Gore

Molecular Biology and Theater
UW-Madison

“I hereby affirm that this is an original essay and my own work.”
MADELINE: I’m majoring in Molecular Biology and Theatre.

MOST PEOPLE: (Pause.) Interesting.

(Looks confused. Exits stage right.)

MADELINE: (Aloud, and to the audience.) This is the disheartening response that I receive after telling people about my double major. “Interesting.” A word meant to portray intrigue is used to oh-so delicately cover up their doubts about my financial future, and likely my overall sanity. At first, I found myself trying to explain my decision. I grew tired of this, and instead, began to simply laugh along, saying, “Yeah. It is kind of weird.” Soon, I decided to avoid telling people what I studied. If all my attempts to change the subject to feminism or Harry Potter failed, I would tactfully mention only my Molecular Biology major, leaving out my Theatre studies. I tried to shield myself from outside judgment and the feelings of inadequacy that accompanied it.

Discouraged by others’ skepticism, I was having trouble feeling proud of my interests. Before coming to college, I had never realized the stigma that humanities majors encounter. These areas of study are stereotyped as useless and usually challenged by a keen, “So, what exactly are you going to do with that?” On the flipside, I have never had to explain my decision to major in Molecular Biology. People assume that my future is already set for me, which is why I neglect to disclose my theatre major.

Recently, however, I’ve found my confidence. Over the years, I’ve observed that on the first day of class professors love to begin with a statement describing how all of humanity depends on the specific subject they are teaching. A few I’ve encountered are:
“The world cannot exist without chemistry!” “How are we mobile without physics?” or “Life is Biology!” I usually find myself agreeing with these sweeping statements, but when I reluctantly sat down in the splintering chair of a packed lecture hall for the first day of my Detective Fiction class, the professor, Caroline Levine, stood up in front of us and stated:

LEVINE: (From offstage.) Almost everything you do relies on the themes of detective fiction.

MADELINE: I had trouble choking back my laughter. Detective fiction? While I had read and enjoyed a majority of Arthur Conan Doyle’s stories, I refused to believe that our lives rely on the findings of an arrogant man who runs around in a plaid cap solving murder mysteries with his disappointing and oblivious sidekick. However, I soon realized that Levine was quite serious. She explained how detective characters in these novels unravel mysteries using the scientific method. They create a hypothesis based on background knowledge, test their prediction, collect clues or data, and draw a conclusion about who deserves the blame. If they are wrong, they go back, readjust their hypothesis, and come to a new conclusion, as a scientist would.

My attention was caught. She had convinced me of a tie between experimental science and detective fiction. Frankly, I was surprised by how these two different schools of thought could use the same method—so much so, that I called my mom immediately following the bell to explain this theory.
MOM: *(From offstage.)* It’s like your two majors!

MADELINE: What? *(Aside.)* I had no idea what she was talking about.

MOM: They relate in ways that not many people notice.

MADELINE: Not once in my biology class did I think to myself, “Hmm… Let’s relate of Krebs Cycle to the cyclic expression of madness in *Hamlet.*” I laughed at her clearly ridiculous comment and changed the subject away from my majors, as always.

A couple of weeks later, while I was working in my breast cancer research lab, my mentor pulled me aside.

MENTOR: *(From offstage.)* You’ve studied in this lab for a while, and it’s time for you to come up with your own experiments.

MADELINE: I panicked. I did not know how to do any of this on my own, or how to come up with brand new ideas in a lab full of graduate students and post docs.

Later that day, I was glad to reach my acting class where I could exercise my more creative and artistic side. One of the rules that my theatre professors often stressed was that no performance is the same. For instance, if you see two performances of *The Glass Menagerie* put on by different companies, the piece will be interpreted much differently even though the script might be exactly the same. One director might choose to switch the genders of the roles, making a statement about the power dynamic of men
and women in a common household. Another might make a more subtle choice and play a classical song quietly under the scenes with heated arguments. Beyond the director, the actors playing the same characters can make their personality more regretful, stubborn, lonely, or brash. There are many variable elements of a play that can alter the entire story and, by extension, the overall message that the audience takes away from the performance.

That is what that I really like about theatre: the fact that no matter how many times a particular play has been done, each new performance will produce a novel interpretation.

The following day I arrived at my research lab, still terrified of what I wasn’t able to do. My mentor helped me draw out the cell-signaling pathway that we knew based on past research. Cell-signaling is a concept with which I have recently become more familiar. Essentially, it is the pathway that cells use to send chemical messages to each other. Little is known about the pathway we were researching; we knew of only three steps that acted in series: chemical A signals to B which, then, signals to C. My mentor said:

MENTOR: *(From offstage.)* So! What are you going to do?

ME: I felt my stage fright returning. There was only one direction the arrows were pointing, and that was the only way we knew: From A to B to C. One interpretation.

Then, I thought, what if the steps looped back on each other in a feedback loop where C signaled back to A?
I began experimenting right away. To my surprise, I found that the final step of the signaling pathway, C, did in fact affect the beginning step, which was contrary to past research. I had found something that no one had found before. It came from my own interpretation of the pathway.

Although it took me a while, I realized that what I adore so much about theatre is what gives me such a passion for research: the ability to look at something that is already known, a play or a pathway, find a new perspective that will alter the result in a way that nobody has ever seen. I never thought that my acting class would prepare me for conducting independent scientific research.

Now, it is such an adrenaline rush to think of new experiments that no one else in the world has tried and put them into action. My method: I continue to think like I do in my theatre classes, studying the known from all angles and searching for a new twist.

“Interesting.” I agree. That’s why I am majoring in Molecular Biology and Theatre: I can look at what has been done, and find new ways to express myself.